• Title/Summary/Keyword: Low sea surface salinity

Search Result 166, Processing Time 0.02 seconds

Hydrography and Circulation in the Youngsan River Estuary in Summer, 2000 (2000년 여름 영산강 하구의 해수 특성과 순환)

  • Cho, Yang-Ki;Cho, Cheol;Sun, Youn-Jong;Park, Kyung-Yang;Park, Lae-Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • Water movement in the Young San River Estuary where a sea dyke was constructed, was observed using anacoustic doppler profiler (ADP) and two TGPS buoys for 25 hours on 27-28 July 2000. Hydrographic observations were simultaneously taken using CTD to understand the characteristic of the spacial structure of temperature and salinity. A large quantity of fresh water was discharged from the sea dyke on 26 July 2000. The observation period fell on neap tide. The amplitude of the tidal elevation and the maximum velocity of the tidal current were about 4 m and 12 cm/sec respectively. The water movement at the surface layer is mainly controlled by wind, and those at the other layers are controlled by semidiurnal tide. The low salinity water less than 22 psu was observed along the northern part during the early observation period while southerly wind prevails. The less saline water moves westward and finally leaves the estuary by easterly wind early on the second day. We can divide the vertical structure into four layers by hydrography and current structure. Mean velocity structure shows that relatively less saline waters at the surface and the middle layer move seaward, and the waters at the upper and the bottom layers move landward. It is thought that the intermittent discharge of river water from the sea dyke makes vertical structure of four layers.

  • PDF

Assesment of pCO2 in the Yellow and East China Sea Using an Earth System Model (지구시스템모형을 이용한 황동중국해 이산화탄소분압 분포 특성 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.447-455
    • /
    • 2011
  • Using results from an earth system model, the distribution of partial pressure of $CO_2$ ($pCO_2$) in surface seawater over the East China Sea is investigated. In this area $pCO_2$ shows minimum along the edge of the continental break along the path of the Taiwan-Tsushima Current System. Apparently modelled chlorophyll is also great along the current but the maximum of the chlorophyll and the minimum of $pCO_2$ do not coincide suggesting that the primary production is not the main cause of the $pCO_2$ minimum. As we move toward the Yellow Sea from the Kuroshio area the temperature decreases so that the $pCO_2$ becomes smaller. If we move further toward the Yellow Sea beyond the Taiwan-Tsushima Current System, alkalinity starts to drop substantially to intensify $pCO_2$ while overcoming the effect of decreasing temperature and salinity. Thus $pCO_2$ minimum occurs along the Taiwan-Tsushima Current System. Of course, the primary production lower $pCO_2$ during spring when it is high but the effect is local. Near the Yangtze river mouth and northeastern corner of the Yellow Sea the fresh water input is large enough and dissolved inorganic carbon (DIC) becomes low enough so that $pCO_2$ becomes lower again.

Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009 (이른 여름 동중국해 대륙사면의 해양환경과 소형 식물플랑크톤 군집의 연직분포 특성)

  • Yoon, Yang Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.151-162
    • /
    • 2013
  • Studies of the distribution of micro-phytoplankton community and chlorophyll a concentration have focused on the vertical profiles of marine environmental factors such as water temperature, salinity, sigma-t, light intensity, and dissolved oxygen in the continental slope on the east parts of East China Sea in the early summer of 2009. Water temperature showed a gradual reduction according to the depth. While the salinity was low in the surface layer showing a mixed down to the relatively subsurface layer, it was increased with an increase in the depth at the middle and bottom layers showing a maximum value at 150~200 m followed by a decreasing aspect afterwards, although the change was not large. The change of sigma-t was governed by the water temperature, and gradually increased in the surface layer with an increase in the depth, showing a value higher than in the surface layer by about 3 $kg/m^3$ at the bottom layer. Although the intensity of light was exponential reduced in the surface layer, the compensation depth was located at the depth of about 80m. The vertical profiles of chlorophyll a concentration was governed by the intensity rather than the changes in water temperature or salinity, exhibiting a maximum value at the compensation depth corresponding to 1% in the surface light intensity. The micro-phytoplankton communities consisted of 56 genera 103 species showing a relatively variety, while the standing crop was also changed to 112.0~470.0 cells/L in the pelagic environment, showing a maximum chlorophyll a concentration. Although a variety of dominant species appear at low dominance without dominant species appearing with a right-wing point in the phytoplankton communities, the silicoflagellate, Otactis otonaris at the station A and the dominance of 26% due to Leptocylindrus mediterraneus at the station C have been judged to be unusual. For community analysis of infinitesimal creatures such as phytoplankton of oligotrophic waters through the present study, ecology studies through vertical sample collection agreeing with the results of continuous observation such as identification of vertical distribution in a marine environment or of maximum chlorophyll layers have been considered rather than a survey method with intervals of a given depth such as surface, subsurface, middle and bottom layers.

Salinity Distribution in the Mid-eastern Yellow Sea during the High Discharge from the Keum River Weir (금강하구언 대량방류시 황해 중동부 해역의 염분분포)

  • Choi, Hyun-Yong;Lee, Sang-Ho;You, Kwang-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Hydrographic survey was carried out in the mid-eastern Yellow Sea from Keum River to Taean Peninsula in order to study the motion of the freshwater from the Keum River during July 07-12, 1997 when a large volume of freshwater was discharged from the Keum River weir. The low-salinity (less than 30.0 psu) plume was distributed over the large area between the Keum River and Ochong Island, 60 km northwest off the Keum River mouth. A band of relatively low saline water, originating from the Keum River, was also observed to the north of Ochong Island. The strong haline front had advanced from near Sibidongpa Island to Ochong Island, 25 km northwest of Sibidongpa Island, for 48 hours. A northwestward flow of a speed greater than 0.2 m/s was observed in the surface plume layer to the north of Sibidongpa Island where the water column was strongly stratified. The observed mean flow and the change of the frontal position are interpreted as resulting from the spreading of the Keum River plume. These results suggest that the discharge from the Keum River plays an important role in the coastal circulation of the mid-eastern Yellow Sea adjacent to the river.

  • PDF

Long-term variation of zooplankton around Dokdo in the East Sea (독도 인근해역 동물플랑크톤 장기간 특성)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Kwon, Oh Youn;Cho, Kyuhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.422-430
    • /
    • 2016
  • We investigated the abundance and composition of the zooplankton community around Dokdo in the East Sea from 2006 to 2015. Zooplankton samples were collected in the surface mixed layer by vertical hauls using a standard type net at the monitoring stations. There were no clear long-term trends in the average temperature and salinity, but relatively low salinity was recorded in the summer of 2013 and 2015. The average abundances of zooplankton in the summer increased by two orders of magnitude from $317inds./m^3$ in 2008 to $10,242inds./m^3$ in 2015. This long-term increase was accompanied by a slight increase in the chlorophyll-a concentration and a decrease in the catch of potential crucial predators (anchovy, mackerel pike, squid, herring and horse mackerel) in the study area. The dominant zooplankton, accounting for most of the long-term increase, consisted of appendicularian (Oikopleura spp.), which showed a steady increase since 2012, summer species such as Noctiluca scintillans and the cladoceran Penilia avirostris, which showed an abrupt increase, and the copepod Paracalanus parvus s.l., which showed a rapid increase after its first occurrence in summer 2010. These results suggest that the long-term increase of zooplankton could be related to the increase in the concentration of prey and the decrease in the predation pressure of potential predators around Dokdo in the study area.

Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea (위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이)

  • Son, Young Baek;Jang, Chan Joo;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

Ecological Impact of the Dyke Construction on the Marine Benthos Community of the Oligohaline Youngam Lake (영암호 저서동물군집에 미친 하구둑 건설의 영향)

  • LIM Hyun-Sig;CHOI Jin-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.172-183
    • /
    • 2005
  • To assess the macrobenthic community of oligohaline Youngam Lake, which is located at the Youngsan Watershed on the southwest part of Korea, macrobenthic fauna were collected at 45 stations during May, 2002. A total of 16 species of macrofauna were recorded with a mean density of 240 individuals per $m^2$ and a mean biomass of 7.07 g wet weight per $m^2$. Major dominant faunal groups were crustacean arthropods in terms of the number of species and abundance, and polychaete annelids in terms of biomass. The mean grain size was $5.7\;{\phi}$ which was dominated by silt fraction. The hydrological environment of the lake was characterised as an oligohaline environment with a mean surface water temperature of $17.8^{\circ}C$ and a mean salinity of 2.08 psu. The major dominant species were amphipods, Corophium sp. ($31\%$) and Jesogammarus sp. ($25\%$). Lowe. values of species diversity (H') with a mean of 0.81 (less than 1.0 from most stations) reflected the overall poor faunal diversity in this area. Multivariate analysis suggested that this benthic faunal community could be divided into four sub-regions such as the area from lake proper to water channel to the south, the stations located at the entrance and northern water channel, the stations near the dike, and the lake proper area. Freshwater and brackish water species which occurred in each station group were corresponded to the oligohaline salinity regime. Bottom hypoxia appeared in the entrance part of the lake between dyke and lake proper on May, which was resulted from stratification from spring season. These facts imply that marine macrobenthos were severely impacted by low salinity and a consequent hypoxia after embankment of the lake due to the restriction of water circulation.

Physical Environment Changes in the Keum River Estuary by the Dyke Gate Operation: II. Salinity Structure and Estuary Type (하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화: II. 염분구조와 하구유형)

  • Lee, Sang-Ho;Kwon, Hyo-Keun;Choi, Hyun-Yong;Yang, Jae-Sam;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.255-265
    • /
    • 1999
  • CTD castings and current observations are taken in June, July and October, 1997 and May and July, 1998 to investigate the effect of the Keum River dyke on the structure of physical properties and the type of the Keum River estuary. Tide and tidal current relation shows that the ebbing is longer than the flooding by 1.5 hours with the early current reversing before high tide. In the rainy season (May to July), frequent large fresh water discharge during the ebbing from the dyke changes vertical salinity difference and time variation of salinity greatly near the head of the estuary, where salinity becomes lower than 2‰ in summer fresh water flooding. Halocline developed by the fresh water discharge makes two-layer structure, of which strength and depth increase in the low tide. The relationship between tide phase and surface salinity variation shows the phase lag of 2.5 hours near the head of the estuary but the standing wave relation down the estuary. This phase lag implies that a low salinity water diluted by the fresh water discharge for 2-3 hours in the ebb period moves with tidal excursion. In the dry season, vertical salinity difference reduces significantly. We calculate stratification and circulation parameters using the observed salinity structure, surface current and fresh water discharge. The Keum River estuary shows a partially mixed type, changing the stratification parameter from the rainy to the dry season. Mean flows of observed tidal current at lower and upper layer are landward and seaward, which are consistent with the circulation of a partially mixed estuary. Based upon the estuary type and circulation we suggest that the suspended materials will move toward the upstream due to low-layer mean flow and then the Keum River estuary will be a deposit environment.

  • PDF

The origin of dissolved inorganic nutrients by Kuroshio Intermediate Water in the eastern continental shelf of the East China Sea (동중국해 외대륙붕 저층수의 영양염 기원)

  • Chung Chang Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Yong Il;Moon Duk Soo;Park Jun Kun;Park Yong Chul;Lee Jae Hak;Lie Heung Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.13-23
    • /
    • 2000
  • The distributions of dissolved inorganic nutrient contents were investigated along transection line J (30° N) in the eastern East China Sea in December 1993 and August 1994, respectively. The concentrations of nitrate and silicate in the Kuroshio Surface Water (KSW) with high temperature and high salinity were low below 2μM and 5μM, respectively. However, these were increased sharply with depth and ranged from 20 to 40, 45 to 100μM, respectively, in the Kuroshio Intermediate Water (KIW). The relationship between temperature and nutrients suggests that Kuroshio Intermediate Water with rich nutrients were intruded into the bottom water of the outer continental shelf in the East China Sea. The bottom water of the outer continental shelf was made of two end-members mixing; nutrient depleted warm water and nutrient enriched cold water. Based on temperature, salinity and silicate concentration, the nutrients in the bottom water of the outer continental shelf suggusted to be supplied through the vertical mixing of Kuroshio subsurface water in the depth range of 100~400m. Upwelled nutrient rich water appears to be a important source of nutrients for primary production in the continental shelf area of the East China Sea.

  • PDF

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.