• Title/Summary/Keyword: Low response

Search Result 5,101, Processing Time 0.038 seconds

Ergonomic Optimization of the Handle Height and Distance for the Two-Vertical Type Handles of the 4-Wheel Cart (4륜 운반차 수직형 손잡이에서 인간공학적 최적 높이 및 간격 결정)

  • Song, Young Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • Among various manual materials handling tasks, pushing/pulling was known to be one of the risk factors for the low back and shoulder musculoskeletal disorders (MSDs). This study was conducted to find out an optimal solution set of the handle height and distance for 4-wheel cart with two vertical handles. Ten male college students participated in the pushing force measurement experiment. The face-centered cube design, one of the central composite designs, was applied for the experiment, and the isometric voluntary pushing force was measured in 9 treatment conditions. The second order response surface model was predicted by using the pushing strength as a response variable, and the handle height and distance as independent factors. According to the 2nd order response model, the handle height and distance showed nonlinear relationship with the isometric pushing strength. To maximize the 2nd order response model (pushing force), the handle height and distance were optimized. The optimal handle height was 'xyphoid process height - stature', and the optimal handle distance was '$1.25{\times}shoulder$ width'. When calculated using the anthropometric data of the subjects of this study, the optimal handle height was $115.4{\pm}3.4$ cm, slightly higher than the elbow height, and the handle distance was $52.9{\pm}2.3$ cm.

Adaptive Response in Chinese Hamster lung Cells by Benzidine Dihydrochloride (Benzidine dihydrochloride에 의한 Chinese hamster lung 세포의 적응반응)

  • 맹승희;정해원;이권섭;이용묵;정호근;유일재
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.142-148
    • /
    • 2001
  • We studied adaptive response in CHL cells by benzidine dihydrochloride, a derivative of benzidine, which was a major mutagenic agent in dye industry. Chromosome aberration analysis was used for the identification of adaptive response to this mutagen. Adaptive and reactive doses were confirmed by cell proliferation rate curve. Cell proliferation rate curve was obtained from the mitotic indices of cells treated with various concentrations of benzidine dihydrochloride for 24 hours. Marked adaptive responses to benzidine dihydrochloride in the induction of chromosome aberration were observed in CHL cells by pre-treatment with low concentrations of benzidine dihydrochloride (0.0047 mg/$m\ell$ or 0.0094 mg/$m\ell$) for 24 hours following post-treatment with high concentrations (0.0187, 0.0375, 0.075, 0.15 mg/$m\ell$) for 24 hours. These adaptive responses were found mostly in the type of chromatid breaks and chromatid exchanges. There is no difference in these results between two adaptive doses, 0.0047 mg/$m\ell$ and 0.0094 mg/$m\ell$. The amount of adaptive response, however, was dependent on post-treatment doses.

  • PDF

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

3-D Nano Topology Measurement using VCM (VCM(voice coil motor)를 이용한 3차원 나노 형상 측정 시스템)

  • Jung, Jong-Kyu;Youm, Woo-Sub;Park, Kiy-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1439-1443
    • /
    • 2007
  • In this paper, vibration reduction techniques of a voice coil motor (VCM) actuator are presented for AFM imaging system. The damping coefficient of the actuator driven by VCM with a flexure hinge is quite low and it cause the about 30dB peak amplitude response at the resonance frequency. To decrease this peak response, we design and apply elliptical band-stop filters to xy and z axis VCM actuator. Frequency response of each actuator with filter is measured to verify the effect of the filters. As a sensor, capacitive sensor is used. Vibration reduction rate of the xy actuator with the filter is also measured while real AFM scanning condition. As another method, closed loop control with the capacitive sensor is applied to the xy axis actuator to add an electrical damping effect and vibration reduction rate measured. These vibration reduction rates with each method are compared. In the case of z axis actuator, the frequency response of force (gap) control loop is measured. For comparison, the frequency response using a conventional PID controller is also obtained. Finally, the AFM image of a standard grid sample is measured with the designed controller to analyze the effect in the AFM imaging.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Analysis of Turbine-Generator Shaft System Mechanical Torque Response based on Turbine Blade Modeling (터빈 블레이드 모델링을 통한 터빈 발전기 축 시스템의 기계적 토크 응답 분석)

  • Park, Ji-Kyung;Chung, Se-Jin;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1269-1275
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. There are various factors that affects torsional interaction such as fault, circuit breaker switching and generator mal-synchronizing, etc. Fortunately, we can easily simulate above torsional interaction phenomena by using ElectroMagnetic Transient Program (EMTP). However, conventional EMTP shows the incomplete response of super- synchronous torsional mode since it does not consider turbine blade section. Therefore, in this paper, we introduced mechanical-electrical analogy for detailed modeling of turbine-generator shaft system including low pressure turbine blade section. In addition, we derived the natural frequencies of modeled turbine-generator shaft system including turbine blade section and analyzed the characteristics of mechanical torque response at shaft coupling and turbine blade root area according to power system balanced/unbalanced faults.

Effect of Fire Induced Spalling on the Response of Reinforced Concrete Beams

  • Kodur, V.K.R.;Dwaikat, M.B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.71-81
    • /
    • 2008
  • A macroscopic finite element model is applied to investigate the effect of fire induced spalling on the response of reinforced concrete (RC) beams. Spalling is accounted for in the model through pore pressure calculations in concrete. The principles of mechanics and thermodynamics are applied to compute the temperature induced pore pressure in the concrete structures as a function of fire exposure time. The computed pore pressure is checked against the temperature dependent tensile strength of concrete to determine the extent of spalling. Using the model, case studies are conducted to investigate the influence of concrete permeability, fire scenario and axial restraint on the fire induced spalling and also on the response of RC beams. Results from the analysis indicate that the fire induced spalling, fire scenario, and axial restraint have significant influence on the fire response of RC beams. It is also shown that concrete permeability has substantial effect on the fire induced spalling and thus on the fire response of concrete beams. The fire resistance of high strength concrete beams can be lower that that of normal strength concrete beams due to fire induced spalling resulting from low permeability in high strength concrete.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

Approximate Equivalent-Circuit Modeling and Analysis of Type-II Resonant Immittance Converters

  • Borage, Mangesh;Nagesh, K.V.;Bhatia, M.S.;Tiwari, Sunil
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.317-325
    • /
    • 2012
  • Resonant immittance converter (RIC) topologies can transform a current source into a voltage source (Type-I RICs) and vice versa (Type-II RICs), thereby making them suitable for many power electronics applications. RICs are operated at a fixed frequency where the resonant immittance network (RIN) exhibits immittance conversion characteristics. It is observed that the low-frequency response of Type-II RINs is relatively flat and that the state variables associated with Type-II RINs affect the response only at the high frequencies in the vicinity of the switching frequency. The overall response of a Type-II RIC is thus dominated by the filter response, which is particularly important for the controller design. Therefore, an approximate equivalent circuit model and a small-signal model of Type-II RICs are proposed in this paper, neglecting the high-frequency response of Type-II RINs. While the proposed models greatly simplify and speed-up the analysis, it adequately predicts the open-loop transient and small-signal ac behavior of Type-II RICs. The validity of the proposed models is confirmed by comparisons of their results with those obtained from a cycle-by-cycle simulation and with an experimental prototype.

The Influence of Mixed Solvents Volatility on Charge State Distribution of Peptides During Positive Electrospray Ionization Mass Spectrometry

  • Nielsen, Birthe V.;Abaye, Daniel A.;Nguyen, Minh T.L.
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.29-33
    • /
    • 2017
  • Understanding the mechanisms that control and concentrate the observed electrospray ionisation (ESI) response from peptides is important. Controlling these mechanisms can improve signal-to-noise ratio in the mass spectrum, and enhances the generation of intact ions, and thus, improves the detection of peptides when analysing mixtures. The effects of different mixtures of aqueous: organic solvents (25, 50, 75%; v/v): formic acid solution (at pH 3.26) compositions on the ESI response and charge-state distribution (CSD) during mass spectrometry (MS) were determined in a group of biologically active peptides (molecular wt range 1.3 - 3.3 kDa). The ESI response is dependent on type of organic solvent in the mobile phase mixture and therefore, solvent choice affects optimal ion intensities. As expected, intact peptide ions gave a more intense ESI signal in polar protic solvent mixtures than in the low polarity solvent. However, for four out of the five analysed peptides, neither the ESI response nor the CSD were affected by the volatility of the solvent mixture. Therefore, in solvent mixtures, as the composition changes during the evaporation processes, the $pK_b$ of the amino acid composition is a better predictor of multiple charging of the peptides.