Browse > Article
http://dx.doi.org/10.5478/MSL.2017.8.2.29

The Influence of Mixed Solvents Volatility on Charge State Distribution of Peptides During Positive Electrospray Ionization Mass Spectrometry  

Nielsen, Birthe V. (University of Greenwich, Faculty of Engineering and Science, Chatham Maritime)
Abaye, Daniel A. (University of Greenwich, Faculty of Engineering and Science, Chatham Maritime)
Nguyen, Minh T.L. (University of Greenwich, Faculty of Engineering and Science, Chatham Maritime)
Publication Information
Mass Spectrometry Letters / v.8, no.2, 2017 , pp. 29-33 More about this Journal
Abstract
Understanding the mechanisms that control and concentrate the observed electrospray ionisation (ESI) response from peptides is important. Controlling these mechanisms can improve signal-to-noise ratio in the mass spectrum, and enhances the generation of intact ions, and thus, improves the detection of peptides when analysing mixtures. The effects of different mixtures of aqueous: organic solvents (25, 50, 75%; v/v): formic acid solution (at pH 3.26) compositions on the ESI response and charge-state distribution (CSD) during mass spectrometry (MS) were determined in a group of biologically active peptides (molecular wt range 1.3 - 3.3 kDa). The ESI response is dependent on type of organic solvent in the mobile phase mixture and therefore, solvent choice affects optimal ion intensities. As expected, intact peptide ions gave a more intense ESI signal in polar protic solvent mixtures than in the low polarity solvent. However, for four out of the five analysed peptides, neither the ESI response nor the CSD were affected by the volatility of the solvent mixture. Therefore, in solvent mixtures, as the composition changes during the evaporation processes, the $pK_b$ of the amino acid composition is a better predictor of multiple charging of the peptides.
Keywords
ESI-MS response; charge-state distribution (CSD); neuropeptides; solvent volatility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Girod, M.; Dagany, X.; Dugourd, P. Int. J. Mass Spectrom. 2011, 308, 41.   DOI
2 Winger, B. E.; Lightwahl, K. J.; Smith, R . D. J. Am. Soc. Mass Spectrom. 1992, 3, 624.   DOI
3 Collettem C.; De Pauw, E. Rapid Comm. Mass Spectrom. 1998, 12, 165.   DOI
4 Abaye, D. A.; Pullen, F. S.; Nielsen, B. V. Rapid Comm. Mass Spectrom. 2011a, 25, 3597.   DOI
5 Abaye, D. A.; Pullen, F. S.; Nielsen, B. V. Rapid Comm. Mass Spectrom. 2011b, 25, 1107.   DOI
6 Tang, L.; Kebarle, P. Anal. Chem. 1993, 65, 3654.   DOI
7 Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. Anal. Chem. 2001, 73, 1455.   DOI
8 Iavarone, A. T.; Williams, E. R. J. Am. Chem. Soc. 2003, 125, 2319.   DOI
9 959Carr, S. R.; Cassady, C. J. J. Mass Spectrom. 1997, 32, 959.   DOI
10 Chowdhury, S. K.; Katta, V., Chait, B. T. J. Am. Chem. Soc. 1990, 112, 9012.   DOI
11 Kaltashov, I. A.; Abzalimov, R. R. J. Am. Soc. Mass Spectrom. 2008, 19, 1239.   DOI
12 Kebarle, P.; Verkerk, U. H. Mass Spectrom. Rev. 2009, 28, 898.   DOI
13 Cole, R. B.; Harrata, A. K. J. Am. Soc. Mass Spectrom. 1993, 4, 546.   DOI
14 Wang, G. D.; Cole, R. B. J. Am. Soc. Mass Spectrom. 1996, 7, 1050.   DOI
15 Sterner, J. L.; Johnston, M. V.; Nicol, G. R.; Ridge, D.P. J. Am. Soc. Mass Spectrom. 1999, 10, 483.   DOI
16 Sunner, J.; Nicol, G.; Kebarle, P. Anal. Chem. 1988, 60, 1300.   DOI
17 Nielsen, B. V.; Abaye, D. A. Eur. J. Mass Spectrom. 2013, 19, 335.   DOI
18 Kinoshita, M.; Okamoto, Y.; Hirata, F. J. Mol. Liq. 2001, 90, 195.   DOI
19 Bouchard, M.; Benjamin, D. R.; Tito, P. Biophys. J. 2000, 78, 1010.   DOI
20 Wang, G. D.; Cole, R. B. Org. Mass Spectrum. 1994, 29, 419.   DOI
21 Karas, M.; Bahr, U.; Dulcks, T. Fresen. J. Anal. Chem. 2000, 366, 669.   DOI
22 Braslavsky, S. E. Pure Appl. Chem. 2007, 79, 293.   DOI
23 Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. J. Am. Soc. Mass Spectrom. 2000, 11, 976.   DOI