• Title/Summary/Keyword: Low response

Search Result 5,101, Processing Time 0.052 seconds

Survival, Oxygen Consumption and Stress Response of Parrotfish Oplegnathus fasciatus Exposed to Different Lower Temperature (돌돔(Oplegnathus fasciatus)의 생존, 산소소비 및 생리학적 반응에 미치는 저수온의 영향)

  • Shin, Yun Kyung;Choi, Young Jae;Kim, Won Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.725-732
    • /
    • 2020
  • The sudden drop of water temperature in winter is very threatening factor that affects the productivity of farmed fish and the management in aquafarm. In this study, we investigated the effect of low temperature on the survival, oxygen consumption and stress responses of parrotfish Oplegnathus fasciatus due to acute drop of water temperature. The survival rate of parrotfish Oplegnathus fasciatus was 5% at 6℃, 95% at 8℃ and 100% at 10℃ on the 4th day of exposure in each experimental temperature. Low-lethal temperature for 4days of parrotfish Oplegnathus fasciatus (4 day-LT50) was 6.99℃ (confidence limit, 6.55-7.42℃). Oxygen consumption rate was significantly decreased with decreasing water temperature. Temperature coefficient (Q10) was found to be 4.0 between 10℃ and 8℃ and 0.39 between 8℃ and 6℃. As a result of investigating the stress response according to the drop in water temperature, the concentration of SOD (Superoxide dismutase), cortisol, glucose, total Ig, AST (Aspartate) and ALT (Alanine aminotransferase) increased with decreasing of water temperature. This study would be useful for the management of temperature about cultured fish.

Response of low-temperature steel beams subjected to single and repeated lateral impacts

  • Truong, Dac Dung;Jung, Hae-Jung;Shin, Hyun Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.670-682
    • /
    • 2018
  • This paper presents the experimental and numerical investigation results of the response of low-temperature steel (LT-FH32 grade steel) beams under repeated impacts at room temperature and a single impact at a sub-zero temperature. After conducting tensile tests at room and sub-zero, repeated impact tests were conducted on two clamped single-beam models at room temperature, and single-impact tests of two other clamped single-beam models were conducted at $-50^{\circ}C$. The single and repeated impact tests were conducted by releasing a knife-edge striker using a drop testing machine. The permanent deflection of the model measured after each impact gradually increased with increasing number of impacts. Under the reduced temperature, the permanent deflection of the models slightly decreased. The numerical analyses were also performed to predict the damage response of the tested single-beam models. A comparison of the numerical prediction with those of experiments showed quite reasonable agreement.

The Effects of Sensitivity on Subjective Responses to Residential Noises (생활소음의 주관적 반응에 대한 민감도의 영향)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.363-366
    • /
    • 2005
  • Social survey and auditory experiment on residential noises such as floor impact, air-bome, bathroom, drainage and traffic noises were conducted to investigate the effects of sensitivity and background noise levels on subjective response to residential noises. Results of survey showed that multiple questions for sensitivity to noise have a more power for discrimination against subjective response to noise than single question. It was also found that the correlation between sensitivity and annoyance was relatively low, but the differences in annoyance between sensitivity groups were significant. Result of auditory experiment showed that effects of sensitivity on annoyance were different according to noise type and noise level. It was also shown that the difference in annoyance between the lowest sensitive stoup and the highest sensitive group was significant in low noise level. The effects of background noise on subjective responses to noise was also different according to noise source and noise level, and were significant in low noise level of airborne and drainage noise.

  • PDF

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

A Study on Platform Development for Nerve Stimulation Response Measurement (신경자극반응 측정을 위한 플랫폼 구현에 관한 연구)

  • Shin, Hyo-seob;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.521-524
    • /
    • 2009
  • Response to nerve stimulation platform for implementing measures to detect finger movement has been functioning as an important factor. This stimulated finger on the nerve and muscle responses would vary. In other words, the finger movement of the muscle response to nerve stimulation and sensing Actuator for the H/W development is needed. In addition, a low power embedded CPU based on the top was used. H/W configuration portion of the isolation power, constant current control, High impedance INA, amplifier parts, and the stimulus mode and the Micro-control the status of current, AD converter Low Data obtained through the processing system is implemented.

  • PDF

Improvement of control law for response charaoteristics of a variable structure control system (가변구조제어계의 응답특성향상을 위한 제어법칙의 개선)

  • 김중완;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.508-512
    • /
    • 1989
  • A new control law of a VSCS is illustrated and put into an analytical form. Using the presented control law, a VSCS shows smooth response, low control input and high accuracy in comparison with those by typical control law.

  • PDF

Analysis of response time of twisted-nematic liquid-crystal cells with low twist angle

  • Nam, Chul;Park, Woo-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.195-196
    • /
    • 2000
  • Fast response time is realized by using LTN-LCDs. To calculate the dynamic electro-optical characteristics, Ericksen-Leslie theory is used for the dynamic profile of molecules and order tensor representation is adopted for the free energy calculation.

  • PDF

Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity (기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

Optimization of Automotive Engine-cooling Fan Noise Using Response Surface Method (반응면 기법을 이용한 자동차 엔진 냉각팬의 저소음설계)

  • Lee, J.;Ahn, J.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.407-412
    • /
    • 2000
  • Response surface method is employed in optimizing the acoustic performance of automotive engine-cooling axial fans. The effects of modifications in blade geometry on noise reduction are investigated. Taking the far-field noise level as the objective, a quadratic response surface is constructed utilizing D-Optimality condition as the candidate-points selection criteria. It is shown that the quadratic model exhibits an excellent fitting capability resulting in the blade design with low far-field noise level.

  • PDF

Response Characteristics Of Steel Frame Structuresw With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • Bae, Chun-Hee;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.593-598
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers for control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. This combined method can efectively and accurately determine dynamic response of non-clasically damped systems in the frequency domain. Parametric studties are finally performed to identify optimal parameters of elastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of steel frame. It is demonstrated that using discrete elasatic dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF