Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.2.069

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Habibi, Sajjad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Publication Information
Advances in nano research / v.5, no.2, 2017 , pp. 69-97 More about this Journal
Abstract
In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.
Keywords
nonlinear low-velocity impact; carbon nanotube; laminated FG-CNTRC; thermal environment; Eshelby-Mori-Tanaka;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329 (10), 1875-1889.   DOI
2 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323.   DOI
3 Heydarpour, Y., Aghdam, M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200.   DOI
4 Jam, J. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43.   DOI
5 Jooybar, N., Malekzadeh, P. and Fiouz, A. (2016), "Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment", Compos. Part B: Eng., 106, 242-261.   DOI
6 Kim, M., Park, Y.-B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69 (3), 335-342.   DOI
7 Lei, Z., Liew, K.M. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168.   DOI
8 Lei, Z., Zhang, L. and Liew, K. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259.   DOI
9 Li, X., Gao, H., Scrivens, W.A., Fei, D., Xu, X., Sutton, M.A., Reynolds, A.P. and Myrick, M.L. (2007), "Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites", J. Nanosci. Nanotech., 7(7), 2309-2317.   DOI
10 Liew, K., Lei, Z. and Zhang, L. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97.   DOI
11 Malekzadeh, P. and Dehbozorgi, M. (2016), "Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates", Compos. Struct., 140, 728-748.   DOI
12 Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin-Wall. Struct., 71, 108-118.   DOI
13 Rafiee, M., Liu, X., He, X. and Kitipornchai, S. (2014), "Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates", J. Sound Vib., 333(14), 3236-3251.   DOI
14 Malekzadeh, P. and Zarei, A. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232.   DOI
15 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870.   DOI
16 Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Computat. Mater. Sci., 63, 261-268.   DOI
17 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
18 Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Progress Polym. Sci., 35(7), 837-867.   DOI
19 Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8), 884-907.   DOI
20 Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19.   DOI
21 Shen, H.-S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108.   DOI
22 Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340.   DOI
23 Shen, H.-S. and Zhang, C.-L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411.   DOI
24 Shen, H.-S. and Zhang, C.-L. (2012a), "Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part I: Theory and solutions", Int. J. Non-Linear Mech., 47(9), 1045-1054.   DOI
25 Shen, H.-S. and Zhang, C.-L. (2012b), "Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part II: Numerical results", Int. J. Non-Linear Mech., 47(9), 1055-1064.   DOI
26 Shu, X. and Sun, L. (1994), "Thermomechanical buckling of laminated composite plates with higher-order transverse shear deformation", Comput. Struct., 53(1), 1-7.   DOI
27 Spitalsky, Z., Ttasis D., Papagelis, K. and Galiotis, C. (2010), "Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties", Progress Polym. Sci., 35(3), 357-401.   DOI
28 Sun, C. and Chen, J. (1985), "On the impact of initially stressed composite laminates", J. Compos. Mater., 19(6), 490-504.   DOI
29 Vaziri, R., Quan, X. and Olson, M. (1996), "Impact analysis of laminated composite plates and shells by super finite elements", Int. J. Impact Eng., 18(7), 765-782.   DOI
30 Wang, J. and Pyrz, R. (2004), "Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas", Compos. Sci. Technol., 64(7), 925-934.   DOI
31 Wang, C. and Zhang, L. (2008), "A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes", Nanotechnology, 19(7), 075705.   DOI
32 Wang, Z.-X. and Shen, H.-S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Computat. Mater. Sci., 50(8), 2319-2330.   DOI
33 Wang, Z.-X. and Shen, H.-S. (2012a), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlinear Dyn., 70(1), 735-754.   DOI
34 Wang, Z.-X. and Shen, H.-S. (2012b), "Nonlinear vibration and bending of sandwich plates with nanotubereinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421.   DOI
35 Wang, Z.-X., Xu, J. and Qiao, P. (2014), "Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates", Compos. Struct., 108, 423-434.   DOI
36 Yang, S. and Sun, C. (1982), "Indentation law for composite laminates", Proceedings of the 6th Conference on Composite Materials: Testing and Design, ASTM International.
37 Yas, M. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36(4), 1371-1394.   DOI
38 Zhang, L., Lei, Z., Liew, K. and Yu, J. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Method. Appl. Mech. Eng., 273, 1-18.   DOI
39 Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method for Solid and Structural Mechanics, Butterworth-heinemann.
40 Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460.   DOI
41 Mura, T. (2013), Micromechanics of Defects in Solids, Springer Science & Business Media.
42 Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157.   DOI
43 Alibeigloo, A. and Liew, K. (2013), "Thermoelastic analysis of functionally graded carbon nanotubereinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881.   DOI
44 Aragh, B.S., Barati, A.N. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B: Eng., 43(4), 1943-1954.   DOI
45 Arani, A.G., Maghamikia, S., Momammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25(3), 809-820.   DOI
46 Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
47 Delfosse, D., Vaziri, R., Pierson, M. and Poursartip, A. (1993), "Analysis of the non-penetrating impact behaviour of CFRP laminates", ICCM/9. Composite Behaviour, 5, 366-373.
48 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-225.   DOI
49 Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346.   DOI
50 Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143.   DOI
51 Ebrahimi, F. and Barati, M.R. (2016d), "An exact solution for buckling analysis of embedded piezo-electromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84.   DOI
52 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
53 Ebrahimi, F. and Barati, M.R. (2016f), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
54 Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196.   DOI
55 Ebrahimi, F. and Barati, M.R. (2016g), "Magnetic field effects on buckling behavior of smart sizedependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14.   DOI
56 Ebrahimi, F. and Barati, M.R. (2016h), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279.   DOI
57 Ebrahimi, F. and Barati, M.R. (2016i), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
58 Ebrahimi, F. and Barati, M.R. (2016k), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
59 Ebrahimi, F. and Barati, M.R. (2016m), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90.   DOI
60 Ebrahimi, F. and Barati, M.R. (2016l), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Applied Physics A, 122(9), 792.   DOI
61 Ebrahimi, F. and Barati, M.R. (2016n), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843.   DOI
62 Ebrahimi, F. and Barati, M.R. (2016o), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
63 Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, pp. 376-396.
64 Ebrahimi, F. and Barati, M.R. (2016p), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 1045389X16672569.
65 Ebrahimi, F. and Barati, M.R. (2016q), Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments. Applied Physics A, 122(10), 910.   DOI
66 Ebrahimi, F. and Barati, M.R. (2016r), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014.   DOI
67 Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Design, 28(9), 2394-2401.   DOI