• Title/Summary/Keyword: Low power light irradiation

Search Result 28, Processing Time 0.026 seconds

Effect of the 100Hz PWM Low Power Light Irradiation in Proliferation of NTacSam:SD Bone-marrow Cell (NTacSam:SD 골수 세포의 증식에 100Hz PWM 저출력 광 조사가 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Lee, Ho-Sic;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.10-11
    • /
    • 2008
  • We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for bone marrow cells. MIT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of bone marrow cells was verified in irradiation group as compared to non-irradiation group.

  • PDF

Wound Healing Effect of 525 nm Green LED Irradiation on Skin Wounds of Male Sprague Dawley Rats

  • Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.226-229
    • /
    • 2010
  • Many methods exist that promote wound healing, including light therapy, which consists of light beams that assist the human body in treating and sterilizing wounds, as well as regenerating cells. Irradiation with specific wavelengths of either laser or LED light has been shown to induce beneficial proliferation of fibroblasts that, depending on the size of the wound, can be effective in promoting wound healing. The experiments in this study utilized 8 week old 250~300 g Male Sprague Dawley Rats (ILAR Code: NTacSam:SD) and included a non-irradiation group and a 525 nm green LED irradiation group (n of each group = 7). In experiments animals were allowed to rest for 24 hours after wounds had been excised, which was followed by non- irradiation or 525 nm green LED irradiation therapy one hour per day for 9 days. Immunohistochemical staining was conducted for cytokeratin in order to precisely measure the defect size. In addition, Masson's trichrome staining was utilized in order to compare levels of collagen between the 525 nm green LED irradiation group and the non-irradiation group. Animals exposed to 525 nm green LED irradiation (p<0.05) healed at a faster rate and had increased collagenosis compared with the non-irradiated control group. Thus, treatment with 525 nm green LED irradiation had a beneficial effect on wound healing and should be considered as a possible alternative to low power laser treatment.

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

Effect of the low level light irradiation to NTacSam:SD tissue cell culture (NTacSam:SD의 조직세포 배양에 저출력 광원의 효과)

  • Kim, Tae-Gon;Kim, Toung-Pyo;Park, No-Bong;Lee, Ho-Sic;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.423-423
    • /
    • 2009
  • Currently, lasers are one of the most popular light sources in use for medical treatment. Many studies on low power lasers are being done in cell culture or through animal tests and most report different findings, making it difficult to verify their true effects. There are shifts in trends of studies from laser and LED that are expensive and generate heat problem to LED that are economically effective and safe. Its near infrared rays can penetrate deep into skin or muscle, up to 23 cm, without causing thermal damage or impairing neighboring tissues. This study verified the performance and effectiveness of an LED irradiator that was designed to emit similar wavelengths to that of a laser and thus could be used instead of a low level laser therapy in experiments on animals. And then, each experiment was performed to irradiation group and non-irradiation group for NTacSam:SD tissue cells. MIT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of NTacSam:SD tissue cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF

Characteristics of Low-level Light Source for Animal Cell Proliferation (동물 세포 증식을 위한 저출력 광 소스의 특성)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Song, Chang-Hun;Mun, Seong-Pyo;Kim, Tae-Gon;Park, Yong-Pil;Kim, Dae-Young;Kim, Young-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • This paper performed the basic study for developing the Photodynamic Therapy Equipment for medical treatment. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for both Rat bone marrow and Rat tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow and tissue cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

THE HEALING EFFECTS OF LOW POWER DENSITY LASER TO THE EXPERIMENTAL PERIODONTITIS;HISTOPATHOLOGIC STUDY (저출력 레이저 조사가 성견의 실험적 치주질환 치유에 미치는 영향에 관한 조직병리학적 연구)

  • Kim, Dong-Woon;Lee, Jae-Hyun;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 1993
  • In order to investigate the healing effect on inflammation and bone regeneration of low power density laser radiation in dogs, experimental periodontitis was made in dog mandibular 3rd, 4th premolars. All teeth were classified with four groups of two experimental group and control groups. The second group were irradiated on periodontitis site and the first group were control. The fourth group were irradiated on periodontitis site flap operation and the third group were flap control. Experimental groups were irradiated with GaAs low power density laser of pulse wave and continuous wave of 904nm every day by five days respectively and then control group and experimental groups were evaluated by histo-pathological study. The results were as follows : 1. Experimental periodontits site of dog were irradiated with GaAs low power laser results in reducing of pseudoepitheliomatous proliferation and inflammation at light microscope. 2. After irradiation with low power density laser, experimental groups were revealed that PDL forming activity were increased and newly formed collagen deposition were observed. 3. Low power density lsaer irradiation on experimental periodontits site after flap operation showed that decreasing of inflammation, reducing of osteoclast activity. Capillary proliferation, reduction of pseudoepitheliomatous proliferation. 4. After irradiation with low power density laser on flap experimental site, experimental groups were revealed that newly formed collagen in periodontal ligament and alveolar bone were detected on MT staining.

  • PDF

Effect of Photobiomodulation on the Mesenchymal Stem Cells

  • Yoo, Shin Hyuk
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2020
  • Photobiomodulation forms the basis of photomedicine and is defined as the effect of coherent or non-coherent light sources, such as low-level lasers and light-emitting diodes, on cells and tissues. This treatment technique affects cell functions, proliferation, and migration, and plays an important role in tissue regeneration. Mesenchymal stem cells (MSCs) are known to be beneficial for tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment outcomes. In general, a low-power laser has a positive effect on MSCs, thereby facilitating improvements in different disease models. This study elucidates the mechanisms and effects of low-power laser irradiation on the proliferation, migration, and differentiation of various MSCs that have been examined in different studies.

Optical Characterization of Cubic and Pseudo-cubic Phase Perovskite Single Crystals Depending on Laser Irradiation Time

  • Byun, Hye Ryung;Jeong, Mun Seok
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.42-45
    • /
    • 2018
  • Photovoltaic and optoelectronic devices based on hybrid metal halide perovskites ($MAPbX_3$; $MA=CH_3NH_3{^+}$, $X=Cl^-$, $Br^-$, or $I^-$) are rapidly improving in power conversion efficiency. Also, during recent years, perovskite single crystals have emerged as promising materials for high-efficiency photovoltaic and optoelectronic devices because of their low defect density. Here we show that the light soaking effect of mixed halide perovskite ($MAPbBr_{3-x}I_x$) single crystals can be explained using photoluminescence, time-resolved photoluminescence, and Raman scattering measurements. Unlike Br-based single crystal, Br/I mixed single crystal show a strong light soaking effect under laser irradiation condition that was related to the existence of multiple phases.

Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst

  • Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 2010
  • In order to effective degradation of organic dye both under visible light or ultrasonic irradiation, the MWCNTs (multiwalled carbon nanotube) deposited with Fe and $TiO_2$ were prepared by a modified sol-gel method. The Fe/$TiO_2$-MWCNT catalyst was characterized by surface area of BET, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) and ultraviolet-visible (UV-vis) spectroscopy. The low intensity visible light and low power ultrasound was as an irradiation source and the methylene blue (MB) was choose as the model organic dye. Then degradation experiments were carried out in present of undoped $TiO_2$, Fe/$TiO_2$ and Fe/$TiO_2$-MWCNT catalysts. Through the degradation of MB solution, the results showed the feasible and potential use of Fe/$TiO_2$-MWCNT catalyst under visible light and ultrasonic irradiation due to the enhanced formation of reactive radicals as well as the possible visible light and the increase of ultrasound-induced active surface area of the catalyst. After addition of $H_2O_2$, the MB degradation rates have been accelerated, especially with Fe/$TiO_2$-MWCNT catalyst, in case of that the photo-Fenton reaction occurred. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of Fe/$TiO_2$-MWCNT catalyst.

Characteristics of Optical Power of Low Level Laser Apparatus (저출력 레이저 치료기의 광 출력 특성)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Kim, Yong-Pil;Yu, Seong-Mi;Park, No-Bong;Lee, Hee-Gab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.496-496
    • /
    • 2007
  • Low level laser has various therapy effects. This paper performed the basic study for fabricating the low level laser therapy apparatus, and one of the goals of this paper was to make this apparatus used handily. The apparatus has been fabricated using the laser diode and microprocessor unit. The apparatus used a 660nm Laser diode for blood stream improvement and was designed for a pulse width modulation type to increase stimulation effects. In result, we could get the light power of 660nm wavelength and the 1~10Hz irradiation frequency could be controlled stably.

  • PDF