DOI QR코드

DOI QR Code

Effect of Photobiomodulation on the Mesenchymal Stem Cells

  • Yoo, Shin Hyuk (Department of Otorhinolaryngology, Dankook University College of Medicine)
  • Received : 2020.06.04
  • Accepted : 2020.07.20
  • Published : 2020.12.31

Abstract

Photobiomodulation forms the basis of photomedicine and is defined as the effect of coherent or non-coherent light sources, such as low-level lasers and light-emitting diodes, on cells and tissues. This treatment technique affects cell functions, proliferation, and migration, and plays an important role in tissue regeneration. Mesenchymal stem cells (MSCs) are known to be beneficial for tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment outcomes. In general, a low-power laser has a positive effect on MSCs, thereby facilitating improvements in different disease models. This study elucidates the mechanisms and effects of low-power laser irradiation on the proliferation, migration, and differentiation of various MSCs that have been examined in different studies.

Keywords

References

  1. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, et al. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 2014;5:36. https://doi.org/10.3389/fphys.2014.00036
  2. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--part I: stem cell sources. J Prosthodont Res 2012;56:151-65. https://doi.org/10.1016/j.jpor.2012.06.001
  3. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393-403.
  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. https://doi.org/10.1126/science.284.5411.143
  5. Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima M. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials 2012;33:2109-18. https://doi.org/10.1016/j.biomaterials.2011.11.056
  6. Moore KC. Photomedicine: the early years. Photomed Laser Surg 2013;31:563-4. https://doi.org/10.1089/pho.2013.9870
  7. Szymczyszyn A, Doroszko A, Szahidewicz-Krupska E, Rola P, Gutherc R, Jasiczek J, et al. Effect of the transdermal low-level laser therapy on endothelial function. Lasers Med Sci 2016;31:1301-7. https://doi.org/10.1007/s10103-016-1971-2
  8. Roelandts R. The history of phototherapy: something new under the sun? J Am Acad Dermatol 2002;46:926-30. https://doi.org/10.1067/mjd.2002.121354
  9. Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 2011;11:154-9.
  10. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 2009;16:4. https://doi.org/10.1186/1423-0127-16-4
  11. Ganjali M, Seifalian AM, Mozafari M. Effect of laser irradiation on cell cycle and mitosis. J Lasers Med Sci 2018;9:249-53. https://doi.org/10.15171/jlms.2018.45
  12. Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 2012;27:509-19. https://doi.org/10.1007/s10103-011-0995-x
  13. Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol 2016;36:282-90. https://doi.org/10.1016/j.intimp.2016.05.007
  14. Araujo TG, Oliveira AG, Franchi Teixeira AR. Low-power laser irradiation (LPLI): a clinical point of view on a promising strategy to improve liver regeneration. J Lasers Med Sci 2018;9:223-7. https://doi.org/10.15171/jlms.2018.40
  15. Chen CH, Hung HS, Hsu SH. Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 2008;40:46-54. https://doi.org/10.1002/lsm.20589
  16. Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 2008;217:518-28. https://doi.org/10.1002/jcp.21529
  17. Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev 2017;26:762-75. https://doi.org/10.1089/scd.2016.0332
  18. Pinheiro CCG, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. Low power laser therapy: a strategy to promote the osteogenic differentiation of deciduous dental pulp stem cells from cleft lip and palate patients. Tissue Eng Part A 2018;24:569-75. https://doi.org/10.1089/ten.tea.2017.0115
  19. Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L, et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 2018;233:4907-18. https://doi.org/10.1002/jcp.26309
  20. Park IS, Chung PS, Ahn JC, Leproux A. Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia. Lasers Med Sci 2017;32:1737-46. https://doi.org/10.1007/s10103-017-2239-1
  21. Park IS, Chung PS, Ahn JC. Angiogenic synergistic effect of adipose-derived stromal cell spheroids with low-level light therapy in a model of acute skin flap ischemia. Cells Tissues Organs 2016;202:307-18. https://doi.org/10.1159/000445710
  22. Park IS, Chung PS, Ahn JC. Enhancement of ischemic wound healing by spheroid grafting of human adipose-derived stem cells treated with low-level light irradiation. PLoS One 2015;10:e0122776. https://doi.org/10.1371/journal.pone.0122776
  23. Nurkovic J, Zaletel I, Nurkovic S, Hajrovic S, Mustafic F, Isma J, et al. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells. Lasers Med Sci 2017;32:151-60. https://doi.org/10.1007/s10103-016-2097-2
  24. Barboza CA, Ginani F, Soares DM, Henriques AC, Freitas Rde A. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 2014;12:75-81. https://doi.org/10.1590/s1679-45082014ao2824
  25. Park IS, Chung PS, Ahn JC. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials 2014;35:9280-9. https://doi.org/10.1016/j.biomaterials.2014.07.061
  26. de Lima RDN, Vieira SS, Antonio EL, Camillo de Carvalho PT, de Paula Vieira R, Mansano BSDM, et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J Photochem Photobiol B 2019;196:111512. https://doi.org/10.1016/j.jphotobiol.2019.111512
  27. Liao X, Li SH, Xie GH, Xie S, Xiao LL, Song JX, et al. Preconditioning with low-level laser irradiation enhances the therapeutic potential of human adipose-derived stem cells in a mouse model of photoaged skin. Photochem Photobiol 2018;94:780-90. https://doi.org/10.1111/php.12912
  28. Sefati N, Abbaszadeh HA, Fadaei Fathabady F, Abdollahifar MA, Khoramgah MS, Darabi S, et al. The combined effects of mesenchymal stem cell conditioned media and low-level laser on stereological and biomechanical parameter in hypothyroidism rat model. J Lasers Med Sci 2018;9:243-48. https://doi.org/10.15171/jlms.2018.44
  29. Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci 2019;34:169-78. https://doi.org/10.1007/s10103-018-2673-8
  30. Ferreira-Silva V, Primo FL, Baqui MMA, Magalhaes DAR, Orellana MD, Castilho-Fernandes A, et al. Beneficial role of low-intensity laser irradiation on neural β-tubulin III protein expression in human bone marrow multipotent mesenchymal stromal cells. Stem Cell Rev Rep 2018;14:585-98. https://doi.org/10.1007/s12015-017-9796-3
  31. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 2012;27:237-49. https://doi.org/10.1007/s10103-011-0885-2
  32. Fallahnezhad S, Piryaei A, Tabeie F, Nazarian H, Darbandi H, Amini A, et al. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats. J Biomed Opt 2016;21:98002. https://doi.org/10.1117/1.JBO.21.9.098002
  33. Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Front Physiol 2018;9:123. https://doi.org/10.3389/fphys.2018.00123
  34. Leonida A, Paiusco A, Rossi G, Carini F, Baldoni M, Caccianiga G. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: in vitro pilot study. Lasers Med Sci 2013;28:125-32. https://doi.org/10.1007/s10103-012-1067-6
  35. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 2007;39:373-8. https://doi.org/10.1002/lsm.20492
  36. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 2008;40:726-33. https://doi.org/10.1002/lsm.20709
  37. Cavalcanti MF, Maria DA, de Isla N, Leal-Junior EC, Joensen J, Bjordal JM, et al. Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomed Laser Surg 2015;33:610-6. https://doi.org/10.1089/pho.2014.3864
  38. Gomiero C, Bertolutti G, Martinello T, Van Bruaene N, Broeckx SY, Patruno M, et al. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun 2016;40:39-48. https://doi.org/10.1007/s11259-016-9652-y
  39. Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 2007;39:534-42. https://doi.org/10.1002/lsm.20519
  40. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, et al. Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 2001;28:204-11. https://doi.org/10.1002/lsm.1039
  41. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 2006;124:201-10. https://doi.org/10.1016/j.pain.2006.05.018
  42. Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 2006;24:705-14. https://doi.org/10.1089/pho.2006.24.705
  43. Lubart R, Lavi R, Friedmann H, Rochkind S. Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 2006;24:179-85. https://doi.org/10.1089/pho.2006.24.179
  44. Pereira LO, Longo JP, Azevedo RB. Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 2012;57:1079-85. https://doi.org/10.1016/j.archoralbio.2012.02.012
  45. Pereira AN, Eduardo Cde P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 2002;31:263-7. https://doi.org/10.1002/lsm.10107
  46. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 2004;34:260-5. https://doi.org/10.1002/lsm.20008
  47. Eduardo FP, Mehnert DU, Monezi TA, Zezell DM, Schubert MM, Eduardo CP, et al. Cultured epithelial cells response to phototherapy with low intensity laser. Lasers Surg Med 2007;39:365-72. https://doi.org/10.1002/lsm.20481
  48. Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010;62:607-10. https://doi.org/10.1002/iub.359
  49. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 2012;44:218-26. https://doi.org/10.1002/lsm.22003
  50. Gupta A, Dai T, Hamblin MR. Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci 2014;29:257-65. https://doi.org/10.1007/s10103-013-1319-0
  51. Vera Mendez TMT, Pinheiro ALB, Pacheco MTT, Ramalho LMP, do Nascimento PM. Assessment of the influence of the dose and wavelength of LLLT on the repair of cutaneous wounds. San Jose: ProcSPIE; 2003. p.137-43.
  52. Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S, et al. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol B 2019;201:111658. https://doi.org/10.1016/j.jphotobiol.2019.111658