• Title/Summary/Keyword: Low order controller

Search Result 298, Processing Time 0.027 seconds

A Study on the Development of a Boiler Control System Simulator for Evaluation of the Fault Tolerant Control System (FTCS의 성능시험을 \ulcorner나 보일러 제어시스템 시뮬레이터의 개발에 관한 연구)

  • ;;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.786-795
    • /
    • 1988
  • In this paper a boiler control system simulator is designed and inplemeted in order to evaluate performance of the Fault Tolerant Control System. It simulates a boiler control system of a thermal power plant containtng boiler process, peripheral units and analog controller. The simulator uses a low order linear model for boiler first order models for the peripheral unit. Specifically the model of the analog controller is modularized and transformed to digital form if order to be implemented using a micro-processor board. The experimental results show the usability of the developed simulator for the performance test of the FTCS.

  • PDF

Damping Inter-area Low Frequency Oscillations in Large Power Systems with $H_{\infty}$ Control of TCSC PARTI : TCSC Siting (TCSC의 $H_{\infty}$ 제어에 의한 대규모 전력계통의 지역간 저주파진동 억제 PartI : 설치지점 선정)

  • Kim, Yong-Gu;Sim, Gwan-Sik;Song, Seong-Geun;Kim, Yeong-Hwan;Nam, Hae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.226-232
    • /
    • 2000
  • This paper presents application results of the augmented matrix eigen-sensitivity theories to TCSC siting problem for damping the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area mode are computed fro changes in susceptance of the transmission lines. The lines having high sensitivity are chosen as the initial candidates for installing TCSC. Then for each of the chosen candidates, Bodeplot of the transfer function with line susceptance as the input and the bus voltage at one side of the line as the output is computed. Using the Bode plots, the lines having any zeros near the inter-area mode are screened out since design of TCSC controller is very difficult in such a case. The $H_{\infty}$ TCSC controller installed at any finally chosen candidate is found to be effective in damping the inter-area oscillation, and the proposed TCSC siting algorithm is proved to be valid. Design of $H_{\infty}$ controller is described in Part IIof this paper.

  • PDF

Car transmission shaft distortion correction system based on adaptive PID controller using displacement sensors (변위센서를 이용한 적응적 PID제어기반 자동차 변속기 샤프트 교정시스템)

  • Choi, Sang-Bok;Ban, Sang-Woo;Kim, Ki-Taeg
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.375-384
    • /
    • 2010
  • In this paper, we proposed a new shaft distortion correction system having an adaptive PID controller using displacement sensors, which is adaptively reflecting variations of shaft strength owing to irregular heat treatment during an annealing process and sensitivity to the seasonal temperature changes. Generally, the shafts are annealed by heat treatment in order to enlarge the strength of the shaft, which causes an distortion of a shaft such as irregular bending of the shaft. In order to correct such a distortion of the shaft, a mechanical pressure is properly impacted to the distorted shaft. However, the strength of every shaft is different from each other owing to irregular annealing and seasonal temperature changes. Especially, the strength of a thin shaft such as a car transmission shaft is much more sensitive than that of a thick shaft. Therefore, it is very important for considering the strength of each shaft during correction of the car transmission shaft distortion in order to generate proper mechanical pressure. The conventional PID controller for the shaft distortion correction system does not consider each different strength of each shaft, which causes low productivity. Therefore, we proposed a new PID controller considering variations of shaft strength caused by seasonal temperature changes as well as irregular heat treatment and different cooling time. Three displacement sensors are used to measure a degree of distortion of the shaft at three different location. The proposed PID controller generates adaptively different coefficients according to different strength of each shaft using appropriately obtained pressure times from long-term experiments. Consequently, the proposed shaft distortion correction system increases the productivity about 30 % more than the conventional correction system in the real factory.

Sensorless speed control of switched reluctance motor using phase current detection and dwell angle control (상전류 검출 및 도통각 조정을 이용한 SRM 센서리스 속도제어)

  • 신규재;권영안
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.955-957
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia, and high poer rate per unit volume. However, position sensor isessential in SRM in order to synchronize the phase excitation to the rotor position. The position sensors increase the cost of drive system, and tend to reduce system reliability. This paper investigtes the speed control of sensorless SRM. The proposed system consists of position detection circuit, dwell angle controller, digital logic commutator, PI speed controller and 4-phase inverter. The performances in the proposed system are verified through the experiment.

  • PDF

Speed Control of Switched Reluctance Motor Using the One Chip Micoro-Computer (원칩 마이컴을 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 신규재
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.222-224
    • /
    • 2000
  • This Paper investigates the speed control of Switched reluctance motor(SRM) using one chip microcomputer The SRM has the advantages of simple structure low rotor inertia. and high efficiency. The Position sensor is essential in SRM in order to synchronize the Phase excitation to the rotor position. The proposed system consists of phase locked loop controller, switching angle controller and inverter. The Performances in the Proposed system are verified through the experiment.

  • PDF

A 0.25-$\mu\textrm{m}$ CMOS 1.6Gbps/pin 4-Level Transceiver Using Stub Series Terminated Logic Interface for High Bandwidth

  • Kim, Jin-Hyun;Kim, Woo-Seop;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.165-168
    • /
    • 2002
  • As the demand for higher data-rate chip-to-chip communication such as memory-to-controller, processor-to-processor increases, low cost high-speed serial links\ulcorner become more attractive. This paper describes a 0.25-fm CMOS 1.6Gbps/pin 4-level transceiver using Stub Series Terminated Logic for high Bandwidth. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by channel low pass effects, process-limited on-chip clock frequency, and serial link distance. The proposed transceiver uses multi-level signaling (4-level Pulse Amplitude Modulation) using push-pull type, double data rate and flash sampling. To reduce Process-Voltage-Temperature Variation and ISI including data dependency skew, the proposed high-speed calibration circuits with voltage swing controller, data linearity controller and slew rate controller maintains desirable output waveform and makes less sensitive output. In order to detect successfully the transmitted 1.6Gbps/pin 4-level data, the receiver is designed as simultaneous type with a kick - back noise-isolated reference voltage line structure and a 3-stage Gate-Isolated sense amplifier. The transceiver, which was fabricated using a 0.25 fm CMOS process, performs data rate of 1.6 ~ 2.0 Gbps/pin with a 400MHB internal clock, Stub Series Terminated Logic ever in 2.25 ~ 2.75V supply voltage. and occupied 500 * 6001m of area.

  • PDF

A design and implementation of DOS-based multitasking Kernel of the real-time operating systems for robot controller (DOS 환경 로봇제어기용 실시간 운영체계를 위한 멀티태스킹 커널의 설계및 구현)

  • Jang, Ho;Lee, Ki-Dong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.373-380
    • /
    • 1997
  • In order to implement the real-time operating systems for robot controller, this paper proposes a systematic method for implementing the real-time kernel under the DOS environment. So far, we designed the robot control software and its own operating system simultaneously. Though robot operating systems have simple structure, it allows the developer to have a surplus time and effort to implement complete robot systems. In addition to this, in most cases of this type, operating systems does not support multitasking function, thus, low level hardware interrupts are used for real-time execution. Subsequently, some kinds of real-time tasks are hard to implement under this environment. Nowadays, the operating systems for robot controller requires multitasking functions, intertask communication and task synchronization mechanism, and rigorous real-time responsiveness. Thus, we propose an effective and low costs real-time systems for robot controller satisfying the various real-time characteristics. The proposed real-time systems are verified through real implementation.

  • PDF

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Using DSP Algorithms for CRC in a CAN Controller

  • Juan, Ronnie O. Serfa;Kim, Hi Seok
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • A controller area network (CAN) controller is an integral part of an electronic control unit, particularly in an advanced driver assistance system application, and its characteristics should always be advantageous in all aspects of functionality especially in real time application. The cost should be low, while maintaining the functionality and reliability of the technology. However, a CAN protocol implementing serial operation results in slow throughput, especially in a cyclical redundancy checking (CRC) unit. In this paper, digital signal processing (DSP) algorithms are implemented, namely pipelining, unfolding, and retiming the CAN controller in the CRC unit, particularly for the encoder and decoder sections. It must attain a feasible iteration bound, a critical path that is appropriate for a CAN system, and must obtain a superior design of a high-speed parallel circuit for the CRC unit in order to have a faster transmission rate. The source code for the encoder and decoder was formulated in the Verilog hardware description language.

DSP-Based Digital Controller for Multi-Phase Synchronous Buck Converters

  • Kim, Jung-Hoon;Lim, Jeong-Gyu;Chung, Se-Kyo;Song, Yu-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • This paper represents a design and implementation of a digital controller for a multi-phase synchronous buck converter (SBC) using a digital signal processor (DSP). The multi-phase SBC has generally been used for a voltage regulation module (VRM) of a microprocessor because of its high current handling capability at a low output voltage. The VRM requires high control performance of tight output regulation, high slew rate, and load sharing capability of multiple converters. In order to achieve these requirements, the design and implementation of a digital control system for a multi-phase SBC are presented in this paper. The digital PWM generation, current sensing, and voltage and current controller using a DSP TMS320F2812 are considered. The experimental results are provided to show the validity of the implemented digital control system.