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Abstract: A controller area network (CAN) controller is an integral part of an electronic control 
unit, particularly in an advanced driver assistance system application, and its characteristics should 
always be advantageous in all aspects of functionality especially in real time application. The cost 
should be low, while maintaining the functionality and reliability of the technology. However, a 
CAN protocol implementing serial operation results in slow throughput, especially in a cyclical 
redundancy checking (CRC) unit. In this paper, digital signal processing (DSP) algorithms are 
implemented, namely pipelining, unfolding, and retiming the CAN controller in the CRC unit, 
particularly for the encoder and decoder sections. It must attain a feasible iteration bound, a critical 
path that is appropriate for a CAN system, and must obtain a superior design of a high-speed 
parallel circuit for the CRC unit in order to have a faster transmission rate. The source code for the 
encoder and decoder was formulated in the Verilog hardware description language.  
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1. Introduction 

Acontroller area network (CAN) is a system that needs 
a real-time approach to correcting certain problems in its 
nodes, like errors and glitches. The aim of road traffic 
safety systems is to reduce or totally eliminate harm, 
certain fatalities or damage to property from collisions 
between road vehicles, especially in real-time scenarios. 
CAN applications like an advanced driver assistance 
system (ADAS) are rapidly increasing in number and serve 
an important role in embedded systems. Today, the 
requirements for better performance by systems and for 
process flow have been raised significantly. The CAN 
itself has a self-correcting method that is used for error 
checking each frame’s contents, called cyclical redundancy 
checking (CRC) code. CRC codes are used in a wide 
variety of computer networks and data storage devices to 
provide inexpensive and effective error detection capabili-
ties [1]. Common polynomial representations of CRC 
polynomials for the algebraic representations of the 

polynomials for automotive controller network applica-
tions are CRC-11 and CRC-24, both for FlexRay utili-
zations [2], CRC-15 for CAN applications, and CRC-17 
and CRC-21 for CAN-FD [3]. Eq. (1) shows the stan-   
dard implementation for CAN using CRC-15 generating 
polynomial P(X) [4]: 

 
 P(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1 (1) 

 
This 15-bit CRC segment in a data or remote frame 

contains the frame check sequence from the start of the 
frame through the arbitration field and the control field to 
the data field [4]. Stuffing bits are included. 

The general hardware set-up for CRC calculation is 
serial implementation using modulo-2 division [5]. The 
common design approach is accomplished using the linear 
feedback shift register (LFSR), which is built from simple 
shift registers with a small number of XOR gates. This is 
used for random number generation, counters, and 
especially for error checking and correction. The Galois 
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field is the theory behind LFSRs, a finite field named after 
Évariste Galois, which contains a finite number of 
elements. Also, CRC generation can be implemented using 
parallel techniques. 

This paper is organized as follows. Section 2 describes 
the principle behind CRC codes, from serial implementa-
tion to parallel CRC architecture. Section 3 discusses 
general related works on CRC design and utilization. Then, 
in Section 4, a test bench for evaluation is presented for 
CRC encoder and decoder utilization for both serial and 
parallel implementations. Finally, Section 5 concludes this 
paper. 

2. Principles and Algorithms for CRC 
Codes 

The CAN protocol utilizes a very sophisticated error 
handling technique. The network implements a CRC 
method to check for errors in data transmitted over a 
communications link. CRC can be implemented via two 
techniques: serial and parallel CRC generation. CRC 
provides the capability to detect burst errors, which are 
commonly encountered in digital transmissions. In the 
CRC method, several bits are appended to the transmitted 
message so the receiver can determine with a certain 
degree of probability if an error occurred during tran-
smission. 

2.1 Serial Implementation of CRC 
Transmitted messages are divided into predetermined 

lengths that are separated by a fixed divisor, also known  
as generating a polynomial. According to the basic 
calculation, the remainder will be appended after applying 
modulo-2 division and being sent with the message. Then, 
the receiver will recalculate the remainder and compare it 
to the transmitted remainder upon receiving the transmitted 
information. The group of error control bits is appended to 
the end of the block of transmitted data and is called a 
syndrome [6]. 

The modulo-2 division process for a serial CRC 
architecture transmission is shown in Fig. 1. 

2.2 LFSR Theory on CRC Coding 
Generally, CRC arithmetic uses an XOR operation and 

a shifting technique based on LFSR theory. This shifting 
technique is needed in order to determine the CRC code. 
LFSR is widely used in Bose-Chaudhuri-Hocquenghem 
codes and CRC operations [7-9]. Also, LFSR is built from 
simple shift registers composed of D flip-flops and a 
number of XOR gates. Generally, it is used for random 
number generation, counters and error checking and 
correction, like cyclical redundancy checking. In most 
cases, CRC calculation is based on LFSR and deals with 
only one data bit per clock cycle due to serial input. 

A basic LFSR architecture for a Kth order generating 
polynomial is a Galois field. In Eq. (2), K denotes the 
length of the LFSR, i.e., the number of delay elements, and 

P0, P1, P2, P3, …, Pk represents the coefficients of the 
characteristic polynomial of this LFSR, which is 

 
 P(X) = P0 + P1X + P2X2 + … + PKXK  (2) 

 
where P0, P1, P2, P3, …, Pk  ∈ GF(2). 

The Galois field or the primitive polynomial of the 
form Xk + … + X0 is the proper polynomial in constructing 
the steps of data shifting for the manipulation of the CRC 
code. The k exponent indicates the k-bits for CRC, while 
the X0 = 1 term corresponds to connecting the feedback 
directly to the D flip-flop (FF) input of FF1. 

 
An LFSR algorithm for CRC is as follows. 

1.  Determine the appropriate CRC polynomial; for the 
CAN application, CRC-15 was selected. 

2.  In order to build a 15-bit LFSR, the following specifica-
tions from the CRC-15 Galois field polynomial must be 
as follows.  
a. G(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1  
b. The X0 = 1 term corresponds to connecting the 

feedback directly to the first FF for general LFSR, 
but for a CRC application, another XOR gate will be 
connected before the first FF. 

c. X15 indicates the number of flip-flops; a total of 15 
flip flops for CRC-15. 

d. The terms X14, X10, X8, X7, X4, and X3 connect 
XORs between FF3 and FF4, FF4 and FF5, FF7 and 
FF8, FF8 and FF9, FF10 and FF11 and FF14 and FF15 as 
the required tap of every LFSR. Fig. 2 shows the 
LFSR of a CRC-15. 

3.  Then, implement the CRC shift sequence, the initial 
contents of the LFSR, namely, L0 through L14. Setting 
eight-bit data, the first data bit (the most significant bit) 
D7 is shifted into the shift register. 

2.3 Parallel Implementation of CRC 
In LFSR theory generally, a serial CRC architecture 

uses an LFSR design, but a drawback arises with the 
transmission rate. A parallel architecture overcomes this 

Fig. 1. Division procedure using modulo-2. 
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problem.  
There are different techniques for parallel CRC genera-

tion, given as follows. 

2.3.1 Table-Based Algorithm for Pipelined 
CRC Calculations 

This algorithm provides a lower memory look up table 
(LUT) and a high pipelining table architecture, and can 
obtain higher throughput. The main drawback is that it will 
store the pre-calculating CRC in the LUT. Therefore, it is 
necessary to change the LUT every time the polynomial 
changes. 

2.3.2 Fast CRC Update 
This parallel algorithm does not need to calculate CRC 

code each time for all the data bits. Instead, it calculates 
CRC code for only those bits that change, and it needs a 
buffer to store the previous CRC code and data. 

2.3.3 F-matrix Parallel CRC Generation 
This parallel algorithm is not complex, compared with 

the other structure. It compresses a long sequence of data 
bits. 

2.3.4 Unfolding, Retiming and Pipelining 
Algorithm 

The unfolding algorithm is used to convert the original 
architecture to a parallel architecture. However, this 
method may lead to a parallel CRC circuit with a high 
iteration bound, which is the lowest critical path. Hence, 
pipelining is needed to minimize this problem. It was 
developed to reduce the iteration bound of the serial CRC 
architecture. Then, the unfolding algorithm is applied to 
attain a parallel structure with a low iteration bound. 
Finally, a retiming algorithm is essential to obtaining the 
achievable lowest critical path. 

3. Related Works 

CRC implementations for CRC encoders and decoders 
were presented in different publications, however, no 
implementations have been made for CRC-15. Also, no 
digital signal processing (DSP) algorithms, such as 
pipelining, unfolding, and retiming, have been utilized for 
CRC-15. Reddy et al. [10] presented implementation of 

CRC code in a field-programmable gate array and dis-
cussed CRC encoder and decoder utilization. 

Although the paper was not intended for applications 
like CAN networks, this work has insufficient discussion. 
No synthesized results were presented, and in particular, 
ways to detect possible syndrome occurrences with its 
implementation were not conferred in the paper. Also, the 
data and results presented are not enough for future 
references. Cheng and Parhi [11] and Singh et al [12] 
showed simulated results using DSP algorithms for CRC-9 
using a generator polynomial of X9 + X8 + X + 1. 

Tables 1 and 2 show a comparison of serial-to-parallel 
implementation of CRC-9. As shown in both tables, when 
the DSP algorithm is implemented, it minimizes the clock 
cycles and the iteration bound of the original serial 
architecture. The number of clock cycles (9 in the original 
serial architecture) is reduced to 5 when retiming is 
utilized on the unfolded architecture. 

4. CRC-15 Architecture Simulation 

The CAN controller is the hardware component that 
manages physical access to the transmission medium. It 
provides registers for configuration of the connection to a 
bus. The controller also implements the functionality for 
managing and controlling the CAN protocol, including 
management of the transmission modes and handling of 
the bus off-state. Parts of the designed controller are the 
CRC encoder and decoder units. This paper shows the two 

Fig. 2. LFSR of a 15-bit CRC. 

 
Table 1. Clock Cycles of a CRC-9 Architecture.

Architecture Number of  
Clock Cycles 

Original Architecture (Serial) 9 
2-level pipelined 10 
4-level pipelined 12 

Unfolding the 4-level pipelined 4 
Retiming the unfolded architecture 5 

 
Table 2. Iteration Bound of a CRC-9 Architecture. 

Architecture Iteration  
Bound 

Original Architecture (Serial) 2TXOR 
2-level pipelined TXOR 

4-level pipelined and retimed 7/8TXOR 
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options in implementing an encoder and decoder unit for 
CRC code.  

4.1 Serial Implementation of Encoding 
and Decoding 

In designing the CRC encoder using the Verilog 
hardware description language (HDL), the algorithm 
presented above can be used in getting the CRC code. For 
the simulated Verilog HDL, we selected the generating 
polynomial P(X) = X5 + X4 + X2 + 1. The input sides are as 
follows: data_in [11:0] is the input data, clk is the clock of 
the system, valid on its rising edge, crc_en for the enable 
load signal on high level, and rst for reset. The output sides 
are: data_trans [16:0] to be the encoded code words for 
transmission, and crc_out [4:0] for the CRC code. The 

simulated result of CRC encoding is illustrated in Fig. 3. 
While decoding is similar to encoding, at the end of 

every transmission, we must verify the encoded result of 
the decoded code for any possible error that occurred 
during transmission. The input that we define are 
data_trans [16:0] for the received code words from the 
encoder, clk is the clock of the decoding program, and rst 
is the reset signal. For output, data_decod [11:0] is 
decoding original input information, and error [4:0] is the 
slot for the syndrome that occurred during transmission. 

Fig. 4 shows data_trans is 15eb1 in hexadecimal and 
data_decod is af5 in hexadecimal, and when converted into 
binary: 10101111010110001 and 101011110101, respec-
tively. From this, we can identify the CRC code as 10001 
in binary form. Therefore, the encoding and decoding 
program is correct, because the result of the simulated 
encoding process is the same, and error output is zero. 

 

Fig. 3. Simulated CRC encoder. 

 

 

Fig. 4. Simulated result of CRC decoder. 
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4.2 Parallel Implementation 
Parallel CRC implementation improves slow throughput 

in serial transmission. Using the following DSP algorithms 
(namely, pipelining, retiming, and unfolding) helps to 
minimize the problem that arises in the transmission rate. 
This proposed algorithm should first be pipelined to reduce 
the iteration bound, then retimed to reduce the critical path 
(CP), and unfolded to design a high-speed parallel circuit.  

 

4.2.1 Pipelining Algorithm 
This algorithm reduces the CP to either increase the 

clock frequency or the sample speed, and the iteration 
bound of the system will be reduced. 

4.2.2 Retiming Algorithm 
A retiming algorithm relocates registers and delay 

elements to reduce the cycle time or the register areas 
without affecting the input/output characteristics of the 
circuit. This algorithm reduces the CP, but does not change 
latency in the system. 

4.2.3 Unfolding Algorithm 
Unfolding is a technique that duplicates the functional 

blocks to increase the throughput of the DSP program in 
such a way that the output preserves its functional 
characteristics and its output. Direct implementation of 
unfolding may lead to a long iteration bound with the 
lowest achievable CP. 

Tables 3 and 4 shows the output using the DSP 
algorithms in CRC-15, which is much better output 
compared with the existing paper on serial implementation, 
for both clock cycles and iteration bound. Fig. 5 shows the 
architecture of CRC-15 for three-point unfolded, two-
factor pipeline-cutset retimed, and four-level pipeline. 

The results show that the CRC-15 architecture was 
subjected to the following DSP algorithms. 

1. It utilized pipelining and was able to minimize the 
iteration bound. 

2. Then, retiming was able to reduce the CP, but not 

change latency in the system. 
3. Finally, unfolding obtained superior design of a 

high-speed parallel circuit. 

5. Conclusion 

Parallel implementation is preferred for higher speed 
data transmission that cannot be executed over serial 
operation due to its slow throughput. The proposed method 
of applying the DSP algorithm shows better output from 
converting serial CRC-15 to a parallel operation that 
resulted in a lower iteration bound and an increased 
throughput rate, which is appropriate for a CAN controller, 
especially for the encoder and decoder unit. Fig. 5 shows 
the resulting architecture that was subjected to the 
following algorithms: first, pipelining was able to 
minimize the iteration bound; then, it was retimed to 
reduce the CP but did not change latency in the system. It 
was unfolded to obtain superior design of a high-speed 
parallel circuit. The clock cycles and iteration bound 
decreased by 20% and 38.09%, respectively. 

In our future work, we plan to analyze the effects of a 

 

Fig. 5. Three-point unfolded, two-factor cutset retiming pipeline, and a four-level pipeline for CRC-15. 

 
Table 3. Clock cycle results of CRC-15 after the 
implementation of DSP algorithms. 

CRC Polynomial CRC-15 
Original architecture (serial) 15 

4-level pipelined 20 
Retiming after 4-level pipelined 20 

Retiming the 3-point unfolded and  
4-level pipelined 4 

 
Table 4. Iteration bound results of CRC-15 after the 
implementation of DSP algorithms. 

CRC Polynomial CRC-15 
Original architecture (serial) 2TXOR 

4-level pipelined TXOR 
Retiming after 4-level pipelined 1/3TXOR 
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higher pipelining level to maximize the timing optimiza-
tion and to employ the design in different unfolding factors 
for hardware overhead. 
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