
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.1.29 29

IEIE Transactions on Smart Processing and Computing

Using DSP Algorithms for CRC in a CAN Controller

Ronnie O. Serfa Juan1,2 and Hi Seok Kim1

1 Department of Electronic Engineering, College of Engineering, Cheongju University / Cheongju, South Korea
{ronnieserfajuan, khs8391}@cju.ac.kr

2 Electronics Engineering Department, College of Engineering, Technological University of the Philippines/Manila /
Philippines engr_serfs@yahoo.com

* Corresponding Author: Hi Seok Kim

Received February 16, 2016; Accepted February 24, 2016; Published February 29, 2016

* Extended from a Conference: This paper was presented at ICEIC 2016. This paper has been accepted by the editorial
board through the regular review process that confirms the original contribution.

Abstract: A controller area network (CAN) controller is an integral part of an electronic control
unit, particularly in an advanced driver assistance system application, and its characteristics should
always be advantageous in all aspects of functionality especially in real time application. The cost
should be low, while maintaining the functionality and reliability of the technology. However, a
CAN protocol implementing serial operation results in slow throughput, especially in a cyclical
redundancy checking (CRC) unit. In this paper, digital signal processing (DSP) algorithms are
implemented, namely pipelining, unfolding, and retiming the CAN controller in the CRC unit,
particularly for the encoder and decoder sections. It must attain a feasible iteration bound, a critical
path that is appropriate for a CAN system, and must obtain a superior design of a high-speed
parallel circuit for the CRC unit in order to have a faster transmission rate. The source code for the
encoder and decoder was formulated in the Verilog hardware description language.

Keywords: Parallel CRC, Pipelining, Retiming, Unfolding, CRC-15

1. Introduction

Acontroller area network (CAN) is a system that needs
a real-time approach to correcting certain problems in its
nodes, like errors and glitches. The aim of road traffic
safety systems is to reduce or totally eliminate harm,
certain fatalities or damage to property from collisions
between road vehicles, especially in real-time scenarios.
CAN applications like an advanced driver assistance
system (ADAS) are rapidly increasing in number and serve
an important role in embedded systems. Today, the
requirements for better performance by systems and for
process flow have been raised significantly. The CAN
itself has a self-correcting method that is used for error
checking each frame’s contents, called cyclical redundancy
checking (CRC) code. CRC codes are used in a wide
variety of computer networks and data storage devices to
provide inexpensive and effective error detection capabili-
ties [1]. Common polynomial representations of CRC
polynomials for the algebraic representations of the

polynomials for automotive controller network applica-
tions are CRC-11 and CRC-24, both for FlexRay utili-
zations [2], CRC-15 for CAN applications, and CRC-17
and CRC-21 for CAN-FD [3]. Eq. (1) shows the stan-
dard implementation for CAN using CRC-15 generating
polynomial P(X) [4]:

 P(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1 (1)

This 15-bit CRC segment in a data or remote frame

contains the frame check sequence from the start of the
frame through the arbitration field and the control field to
the data field [4]. Stuffing bits are included.

The general hardware set-up for CRC calculation is
serial implementation using modulo-2 division [5]. The
common design approach is accomplished using the linear
feedback shift register (LFSR), which is built from simple
shift registers with a small number of XOR gates. This is
used for random number generation, counters, and
especially for error checking and correction. The Galois

Serfa Juan et al.: Using DSP Algorithms for CRC in a CAN Controller

30

field is the theory behind LFSRs, a finite field named after
Évariste Galois, which contains a finite number of
elements. Also, CRC generation can be implemented using
parallel techniques.

This paper is organized as follows. Section 2 describes
the principle behind CRC codes, from serial implementa-
tion to parallel CRC architecture. Section 3 discusses
general related works on CRC design and utilization. Then,
in Section 4, a test bench for evaluation is presented for
CRC encoder and decoder utilization for both serial and
parallel implementations. Finally, Section 5 concludes this
paper.

2. Principles and Algorithms for CRC
Codes

The CAN protocol utilizes a very sophisticated error
handling technique. The network implements a CRC
method to check for errors in data transmitted over a
communications link. CRC can be implemented via two
techniques: serial and parallel CRC generation. CRC
provides the capability to detect burst errors, which are
commonly encountered in digital transmissions. In the
CRC method, several bits are appended to the transmitted
message so the receiver can determine with a certain
degree of probability if an error occurred during tran-
smission.

2.1 Serial Implementation of CRC
Transmitted messages are divided into predetermined

lengths that are separated by a fixed divisor, also known
as generating a polynomial. According to the basic
calculation, the remainder will be appended after applying
modulo-2 division and being sent with the message. Then,
the receiver will recalculate the remainder and compare it
to the transmitted remainder upon receiving the transmitted
information. The group of error control bits is appended to
the end of the block of transmitted data and is called a
syndrome [6].

The modulo-2 division process for a serial CRC
architecture transmission is shown in Fig. 1.

2.2 LFSR Theory on CRC Coding
Generally, CRC arithmetic uses an XOR operation and

a shifting technique based on LFSR theory. This shifting
technique is needed in order to determine the CRC code.
LFSR is widely used in Bose-Chaudhuri-Hocquenghem
codes and CRC operations [7-9]. Also, LFSR is built from
simple shift registers composed of D flip-flops and a
number of XOR gates. Generally, it is used for random
number generation, counters and error checking and
correction, like cyclical redundancy checking. In most
cases, CRC calculation is based on LFSR and deals with
only one data bit per clock cycle due to serial input.

A basic LFSR architecture for a Kth order generating
polynomial is a Galois field. In Eq. (2), K denotes the
length of the LFSR, i.e., the number of delay elements, and

P0, P1, P2, P3, …, Pk represents the coefficients of the
characteristic polynomial of this LFSR, which is

 P(X) = P0 + P1X + P2X2 + … + PKXK (2)

where P0, P1, P2, P3, …, Pk ∈ GF(2).

The Galois field or the primitive polynomial of the
form Xk + … + X0 is the proper polynomial in constructing
the steps of data shifting for the manipulation of the CRC
code. The k exponent indicates the k-bits for CRC, while
the X0 = 1 term corresponds to connecting the feedback
directly to the D flip-flop (FF) input of FF1.

An LFSR algorithm for CRC is as follows.

1. Determine the appropriate CRC polynomial; for the
CAN application, CRC-15 was selected.

2. In order to build a 15-bit LFSR, the following specifica-
tions from the CRC-15 Galois field polynomial must be
as follows.
a. G(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1
b. The X0 = 1 term corresponds to connecting the

feedback directly to the first FF for general LFSR,
but for a CRC application, another XOR gate will be
connected before the first FF.

c. X15 indicates the number of flip-flops; a total of 15
flip flops for CRC-15.

d. The terms X14, X10, X8, X7, X4, and X3 connect
XORs between FF3 and FF4, FF4 and FF5, FF7 and
FF8, FF8 and FF9, FF10 and FF11 and FF14 and FF15 as
the required tap of every LFSR. Fig. 2 shows the
LFSR of a CRC-15.

3. Then, implement the CRC shift sequence, the initial
contents of the LFSR, namely, L0 through L14. Setting
eight-bit data, the first data bit (the most significant bit)
D7 is shifted into the shift register.

2.3 Parallel Implementation of CRC
In LFSR theory generally, a serial CRC architecture

uses an LFSR design, but a drawback arises with the
transmission rate. A parallel architecture overcomes this

Fig. 1. Division procedure using modulo-2.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016

31

problem.
There are different techniques for parallel CRC genera-

tion, given as follows.

2.3.1 Table-Based Algorithm for Pipelined
CRC Calculations

This algorithm provides a lower memory look up table
(LUT) and a high pipelining table architecture, and can
obtain higher throughput. The main drawback is that it will
store the pre-calculating CRC in the LUT. Therefore, it is
necessary to change the LUT every time the polynomial
changes.

2.3.2 Fast CRC Update
This parallel algorithm does not need to calculate CRC

code each time for all the data bits. Instead, it calculates
CRC code for only those bits that change, and it needs a
buffer to store the previous CRC code and data.

2.3.3 F-matrix Parallel CRC Generation
This parallel algorithm is not complex, compared with

the other structure. It compresses a long sequence of data
bits.

2.3.4 Unfolding, Retiming and Pipelining
Algorithm

The unfolding algorithm is used to convert the original
architecture to a parallel architecture. However, this
method may lead to a parallel CRC circuit with a high
iteration bound, which is the lowest critical path. Hence,
pipelining is needed to minimize this problem. It was
developed to reduce the iteration bound of the serial CRC
architecture. Then, the unfolding algorithm is applied to
attain a parallel structure with a low iteration bound.
Finally, a retiming algorithm is essential to obtaining the
achievable lowest critical path.

3. Related Works

CRC implementations for CRC encoders and decoders
were presented in different publications, however, no
implementations have been made for CRC-15. Also, no
digital signal processing (DSP) algorithms, such as
pipelining, unfolding, and retiming, have been utilized for
CRC-15. Reddy et al. [10] presented implementation of

CRC code in a field-programmable gate array and dis-
cussed CRC encoder and decoder utilization.

Although the paper was not intended for applications
like CAN networks, this work has insufficient discussion.
No synthesized results were presented, and in particular,
ways to detect possible syndrome occurrences with its
implementation were not conferred in the paper. Also, the
data and results presented are not enough for future
references. Cheng and Parhi [11] and Singh et al [12]
showed simulated results using DSP algorithms for CRC-9
using a generator polynomial of X9 + X8 + X + 1.

Tables 1 and 2 show a comparison of serial-to-parallel
implementation of CRC-9. As shown in both tables, when
the DSP algorithm is implemented, it minimizes the clock
cycles and the iteration bound of the original serial
architecture. The number of clock cycles (9 in the original
serial architecture) is reduced to 5 when retiming is
utilized on the unfolded architecture.

4. CRC-15 Architecture Simulation

The CAN controller is the hardware component that
manages physical access to the transmission medium. It
provides registers for configuration of the connection to a
bus. The controller also implements the functionality for
managing and controlling the CAN protocol, including
management of the transmission modes and handling of
the bus off-state. Parts of the designed controller are the
CRC encoder and decoder units. This paper shows the two

Fig. 2. LFSR of a 15-bit CRC.

Table 1. Clock Cycles of a CRC-9 Architecture.

Architecture Number of
Clock Cycles

Original Architecture (Serial) 9
2-level pipelined 10
4-level pipelined 12

Unfolding the 4-level pipelined 4
Retiming the unfolded architecture 5

Table 2. Iteration Bound of a CRC-9 Architecture.

Architecture Iteration
Bound

Original Architecture (Serial) 2TXOR
2-level pipelined TXOR

4-level pipelined and retimed 7/8TXOR

Serfa Juan et al.: Using DSP Algorithms for CRC in a CAN Controller

32

options in implementing an encoder and decoder unit for
CRC code.

4.1 Serial Implementation of Encoding
and Decoding

In designing the CRC encoder using the Verilog
hardware description language (HDL), the algorithm
presented above can be used in getting the CRC code. For
the simulated Verilog HDL, we selected the generating
polynomial P(X) = X5 + X4 + X2 + 1. The input sides are as
follows: data_in [11:0] is the input data, clk is the clock of
the system, valid on its rising edge, crc_en for the enable
load signal on high level, and rst for reset. The output sides
are: data_trans [16:0] to be the encoded code words for
transmission, and crc_out [4:0] for the CRC code. The

simulated result of CRC encoding is illustrated in Fig. 3.
While decoding is similar to encoding, at the end of

every transmission, we must verify the encoded result of
the decoded code for any possible error that occurred
during transmission. The input that we define are
data_trans [16:0] for the received code words from the
encoder, clk is the clock of the decoding program, and rst
is the reset signal. For output, data_decod [11:0] is
decoding original input information, and error [4:0] is the
slot for the syndrome that occurred during transmission.

Fig. 4 shows data_trans is 15eb1 in hexadecimal and
data_decod is af5 in hexadecimal, and when converted into
binary: 10101111010110001 and 101011110101, respec-
tively. From this, we can identify the CRC code as 10001
in binary form. Therefore, the encoding and decoding
program is correct, because the result of the simulated
encoding process is the same, and error output is zero.

Fig. 3. Simulated CRC encoder.

Fig. 4. Simulated result of CRC decoder.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016

33

4.2 Parallel Implementation
Parallel CRC implementation improves slow throughput

in serial transmission. Using the following DSP algorithms
(namely, pipelining, retiming, and unfolding) helps to
minimize the problem that arises in the transmission rate.
This proposed algorithm should first be pipelined to reduce
the iteration bound, then retimed to reduce the critical path
(CP), and unfolded to design a high-speed parallel circuit.

4.2.1 Pipelining Algorithm
This algorithm reduces the CP to either increase the

clock frequency or the sample speed, and the iteration
bound of the system will be reduced.

4.2.2 Retiming Algorithm
A retiming algorithm relocates registers and delay

elements to reduce the cycle time or the register areas
without affecting the input/output characteristics of the
circuit. This algorithm reduces the CP, but does not change
latency in the system.

4.2.3 Unfolding Algorithm
Unfolding is a technique that duplicates the functional

blocks to increase the throughput of the DSP program in
such a way that the output preserves its functional
characteristics and its output. Direct implementation of
unfolding may lead to a long iteration bound with the
lowest achievable CP.

Tables 3 and 4 shows the output using the DSP
algorithms in CRC-15, which is much better output
compared with the existing paper on serial implementation,
for both clock cycles and iteration bound. Fig. 5 shows the
architecture of CRC-15 for three-point unfolded, two-
factor pipeline-cutset retimed, and four-level pipeline.

The results show that the CRC-15 architecture was
subjected to the following DSP algorithms.

1. It utilized pipelining and was able to minimize the
iteration bound.

2. Then, retiming was able to reduce the CP, but not

change latency in the system.
3. Finally, unfolding obtained superior design of a

high-speed parallel circuit.

5. Conclusion

Parallel implementation is preferred for higher speed
data transmission that cannot be executed over serial
operation due to its slow throughput. The proposed method
of applying the DSP algorithm shows better output from
converting serial CRC-15 to a parallel operation that
resulted in a lower iteration bound and an increased
throughput rate, which is appropriate for a CAN controller,
especially for the encoder and decoder unit. Fig. 5 shows
the resulting architecture that was subjected to the
following algorithms: first, pipelining was able to
minimize the iteration bound; then, it was retimed to
reduce the CP but did not change latency in the system. It
was unfolded to obtain superior design of a high-speed
parallel circuit. The clock cycles and iteration bound
decreased by 20% and 38.09%, respectively.

In our future work, we plan to analyze the effects of a

Fig. 5. Three-point unfolded, two-factor cutset retiming pipeline, and a four-level pipeline for CRC-15.

Table 3. Clock cycle results of CRC-15 after the
implementation of DSP algorithms.

CRC Polynomial CRC-15
Original architecture (serial) 15

4-level pipelined 20
Retiming after 4-level pipelined 20

Retiming the 3-point unfolded and
4-level pipelined 4

Table 4. Iteration bound results of CRC-15 after the
implementation of DSP algorithms.

CRC Polynomial CRC-15
Original architecture (serial) 2TXOR

4-level pipelined TXOR
Retiming after 4-level pipelined 1/3TXOR

Serfa Juan et al.: Using DSP Algorithms for CRC in a CAN Controller

34

higher pipelining level to maximize the timing optimiza-
tion and to employ the design in different unfolding factors
for hardware overhead.

Acknowledgement

This work was supported by the IT and R&D Program
of the Ministry of Trade, Industry and Energy (No.
10049192, Development of Smart Automotive ADAS SW-
SoC for Self-Driving Car).

References

[1] P. Koopman. (2002). 32-bit Cyclic Redundancy

Codes for Internet Applications. Proc. IEEE Inter-
national Conference on Dependable Systems and
Networks. Article (CrossRef Link)

[2] FlexRay Consortium. (2010, October). FlexRay
Communication System Protocol Specification
Version 3.0.1 pp. 114-115. Article (CrossRef Link)

[3] BOSCH. (2012, April). CAN with Flexible Data-Rate
Specifications pp. 12-13. Article (CrossRef Link)

[4] W. Voss, “Error Detection and Fault Confinement,”
in A Comprehensible Guide to Controller Area
Network, 2nd ed., Copperhill Media Corporation,
2008, pp. 117-122.

[5] Ch. Janakiram, and K.N.H. Srinivas, (2014,
December). An Efficient Technique for Parallel CRC
Generation. International Journal of engineering and
Computer Science. pp. 9761-9765. Article (CrossRef
Link)

[6] O. Pfeiffer, A. Ayre, and C. Keydel, “Underying
Technology: CAN”, in Embedded Netwroking with
CAN and CANopen, Copperhill Technologies
Corporation, 2008, pp.

[7] W. W. Peterson, and D. T. Brown, “Cyclic Codes for
Error Detection,” in Proc. IRE, 1961, pp. 228-235.
Article (CrossRef Link)

[8] M. Ayinala, and K. K. Parhi (2011, September).
High-Speed Parallel Architectures for Linear
Feedback Shift Registers. IEEE Transactions on
Signal Processing. 59(9), pp. 4459-4469. Article
(CrossRef Link)

[9] T. Zhang, and Q. Ding. (2011, December). Design
and Implementation of CRC Based on FPGA. IEEE
2nd International Conference in Innovations in Bio-
inspired Computing and Applications (IBICA). pp.
160-162. Article (CrossRef Link)

[10] B. N. Reddy, B. K. Kumar, and K. M. Sirisha, (2012).
On the Design of High Speed Parallel CRC Circuits
using DSP Algorithms. International Journal of
Computer Science and Information Technologies
(IJCSIT). pp. 5254-5258. Article (CrossRef Link)

[11] C. Cheng, and K. K. Parhi, (2006, October). High-
Speed Parallel CRC Implementation Based on
Unfolding, Pipelining, and Retiming. IEEE
Transactions on Circuits and Systems. pp. 1017-1021.

Article (CrossRef Link)
[12] S. Singh, S. Sujana, I. Babu and K. Latha, (2013,

May-June). VLSI Implementation of Parallel CRC
Using Pipelining, Unfolding and Retiming. IOSR
Journal of VLSI and Signal Processing (IOSR-JVSP).
pp. 66-72. Article (CrossRef Link)

Ronnie O. Serfa Juan received his
BSc in Electronics and Communica-
tions Engineering from Technological
University of the Philippines-Manila
as a Commission on Higher Education
(ChEd) scholar, and he earned his
MSc in Information and Telecommu-
nications Studies, majoring in Com-

puter Systems and Network Engineering, at Waseda
University, Tokyo, Japan, supported by the Japanese
Government under the JICE-JDS scholarship program, in
1999 and 2007, respectively. He is currently working
toward his PhD, majoring in Computer and Control, at
CheongJu University, CheongJu City, South Korea under
the scholarship program of the Korean Government. He
was a faculty member for both the undergraduate and
graduate programs of Technological University of the
Philippines-Manila and some universities in the
Philippines. His research interests include radio frequency
identification (RFID), ISFET and pH sensor applications
and controller area networks for both medical applications
and advanced driver assistance system (ADAS) technology.

Hi-Seok Kim received his BSc, MSc
and Ph.D. in Electronic Engineering
from Hanyang University, Republic of
Korea in 1980, 1985 and 1987 re-
spectively. He is currently a Professor
in the Electronic Engineering Depart-
ment, CheongJu University, CheongJu
City, South Korea. His research

interests include digital video/audio system design, multi-
view imaging, 3D image processing, and FPGA design. Dr.
Kim has served as General Chair and a committee member
of many Korean and international conferences, including
the International SoC Design Conference and IEEE ISCAS,
He is also one of the General Co-Chairs for APCCAS
2016.

Copyrights © 2016 The Institute of Electronics and Information Engineers

http://dx.doi.org/10.1109/dsn.2002.1028931
https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRay%E2%84%A2 Protocol Specification Version 3.0.1.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf
http://dx.doi.org/10.18535/ijecs
http://dx.doi.org/10.18535/ijecs
http://dx.doi.org/10.1109/jrproc.1961.287814
http://dx.doi.org/10.1109/TSP.2011.2159495
http://dx.doi.org/10.1109/TSP.2011.2159495
http://dx.doi.org/10.1109/ibica.2011.44
http://www.ijcsit.com/docs/Volume 3/vol3issue5/ijcsit2012030566.pdf
http://dx.doi.org/10.1109/TCSII.2006.882213
http://iosrjournals.org/iosr-jvlsi/papers/vol2-issue5/J0256672.pdf

