• Title/Summary/Keyword: Low order controller

Search Result 298, Processing Time 0.021 seconds

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Design of a Low-Vibration Micro-Stepping Controller for Pan-Tilt Camera (팬.틸트 카메라의 저 진동 마이크로스텝핑 제어기 설계)

  • Yoo, Jong-won;Kim, Jung-han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.43-51
    • /
    • 2010
  • Speed, accuracy and smoothness are the important properties of pan-tilt camera. In the case of a high ratio zoom lens system, low vibration characteristic is a crucial point in driving pan-tilt mechanism. In this paper, a novel micro-stepping controller with a function of reducing vibration was designed using field programmable gate arrays (FPGA) technology for high zoom ratio pan-tilt camera. The proposed variable reference current (VRC) control scheme reduces vibration decently and optimizing coil current in order to prevent the step motor from occurring missing steps. By employing VRC control scheme, the vibration in low speed could be significantly minimized. The proposed controller can also make very high speed of 378kpps micro-step driving, and increase maximum acceleration in motion profiles.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Robust Controller Design for interval Plant using Lipatov Theorem (리파토프 정리를 이용한 구간 플랜트의 제어기 설계)

  • Lee, Jin-Kyu;Cha, Young-Ho;Chung, Tae-Jin;Park, Yong-Sik;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.479-481
    • /
    • 1999
  • In this paper, We design low-order controller to achieve maximized controller stability margin and controller' Performance. FOPA(Fixed Order Pole Assignment) method is one of the approach to design controller in the parametric uncertain system. But the method to define a Target Polynomial is not explicit1y Known. In this paper, our goal is to find a controller Coefficient, such that performance and $l_2$ stability margin are maximized in the parametric uncertain system. Using Lipatove theorem and CDM(Coefficient Diagram Method), we set target polynomial constraints and design a controller which maximizes $l_2$ stability margin. we show effectiveness of the proposed controller design method by comparing $l_2$ stability many of the desired controller with that of the conventional robust controller.

  • PDF

Rubust controller for inverter using CRA (CRA를 이용한 인버터 강인제어기 설계)

  • Lee, Jin-Mok;Park, Ga-Woo;Lee, Jae-Moon;Jung, Hun-Sun;Noh, Se-Jin;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.98-100
    • /
    • 2007
  • This paper proposes a robust digital controller for PWM voltage source inverter using CRA method. The usual inverter controller for the operation of constant voltage and constant frequency consists of a double looped PI controller for the outer voltage controller and the inner current controller, of which the order of characteristic polynomial is high and so the gain tuning is difficult. Considering the limited switching frequency of the devices and sampling frequency of the digital controller, the gain tuning is usually based on the engineering experiences with the try and error method. In this paper, the error-space approach is used to get the system model including the controller with low order, and the characteristic ratio assignment (CRA) method is proposed for the design of robust controller which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. The PSiM simulation and experience results are shown to verify the validity of the proposed controller.

  • PDF

REDUCED-ORDER APPROACH USING WEIGHTED CENTROIDAL VORONOI TESSELLATION

  • Piao, Guang-Ri;Lee, Hyung-Chen;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • In this article, we study a reduced-order modelling for distributed feedback control problem of the Burgers equations. Brief review of the centroidal Voronoi tessellation (CVT) are provided. A weighted (nonuniform density) CVT is introduced and low-order approximate solution and compensator-based control design of Burgers equation is discussed. Through weighted CVT (or CVT-nonuniform) method, obtained low-order basis is applied to low-order functional gains to design a low-order controller, and by using the low-order basis order of control modelling was reduced. Numerical experiments show that a solution of reduced-order controlled Burgers equation performs well in comparison with a solution of full order controlled Burgers equation.

  • PDF

UPFC Control based on New IP Type Controller

  • Shirvani, Mojtaba;Keyvani, Babak;Abdollahi, Mostafa;Memaripour, Ahmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.664-671
    • /
    • 2012
  • This paper presents the application of Unified Power Flow Controller (UPFC) in order to simultaneous control of power flow and voltage and also damping of Low Frequency Oscillations (LFO) at a Single-Machine Infinite-Bus (SMIB) power system installed with UPFC. PI type controllers are commonly used controllers for UPFC control. But for the sake of some drawbacks of PI type controllers, the scope for finding a better control scheme still remains. In this regard, in this paper the new IP type controllers are considered as UPFC controllers. The parameters of these IP type controllers are tuned using Genetic Algorithms (GA). Also a stabilizer supplementary controller based UPFC is considered for increasing power system damping. To show the ability of IP controllers, this controller is compared with classical PI type controllers. Simulation results emphasis on the better performance of IP controller in comparison with PI controller.

The Improvement of Control Performance for a Magnetic Levitation System (자기부상 시스템의 성능개선)

  • Kim, Jong-Moon;Kang, Do-Hyun;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.864-866
    • /
    • 2003
  • In this paper, the improvement of control performance for a magnetic levitation system is presented. The model of a single-magnet system with rail is derived. As a conventional controller, PID controller is designed and implemented. This controller has a narrow stability margin due to low-order controller structure so that it cause unstability for a flexible rail. So to improve the control performance and stability margin, a robust controller as a new controller is designed and implemented using a VME-based digital controller. As a result, the controller performance of the new designed controller is better than that of the conventional controller.

  • PDF

Discrete controller order reduction with the closed-loop performance guaranteed (폐루프시스템의 성능을 보장하는 이산제어기 차수축소)

  • 오도창;정은태;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.24-32
    • /
    • 1997
  • This paper is on a discrete controller order reduction with the closed-loop stability and performance guaranteed. to achieve this, after finding the solutionsof two lyapunov inequalities and balancing the full order controller system, we find the reudced order controlers using the balanced truncation (BT) and the balanced singular perturbation approximation (BSPA). When the solutions of the two lyapunov inequalities exist, it is shown that the resulting controllers guarantee the closed-loop stability, and .inf.-norm error bounds are derived for the closed-loop performance region for the BT and in low frequency region for the BSPA. Finally, a numerical example is given to illustrate the validity of the proposed method.

  • PDF

Half Bridge Inverter for Single Phase Induction Motor Driving (단상 유도 전동기를 위한 하프브리지 인버터)

  • 이종규;김영삼;원영진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.181-183
    • /
    • 1999
  • This paper is about the design of half-bridge inverter controller with low cost and simple configuration for low power single-phase induction motor driving. The simple controller is composed of MCU and PLD. Also, to limit the overcurrent at initial driving, auxiliary function is added, and stabilizes the system. In order to verify the performance of the proposed methode, we design 500W inverter system, and in result, the response time of the proposed method compared with line voltage driving method is reduced by 200[msec].

  • PDF