• Title/Summary/Keyword: Low glass transition temperature

Search Result 167, Processing Time 0.022 seconds

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

Synthesis and Properties of Copolyester Resin for Precoated MeTAL (Precoated Metal용 Copolyester Resin의 합성 및 물성)

  • Park, Lee Soon;Lee, Tae Hyung;Kim, Soon Hak;Chang, Jin Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.427-431
    • /
    • 1999
  • Copolyester resins for the coil coating process of aluminium and steel strip were synthesized and their thermal properties, molecular weight and solvent solution characteristics were examined. Copolyesters were obtained by two step reactions. The first step was to prepare bishydroxyethyl terephthalate (BHET), bishydroxyneopentyl terephthalate (BHNPT), bishydroxyethyl isophthalate (BHEI), bishydroxyneopentyl sebacate (BHNPS), bishydroxyneopentyl adipicate (BHNPA) and bishydroxyethyl adipicate (BHEA) oligomers by esterification reactions. The second step was the polycondensation reaction utilizing those oligomers to obtain relatively high molecular weight copolyesters (Mw = 30,000~59,000 g/mol) as measured by GPC. These copolyesters were amorphous polymers as shown by DSC without $T_m$ peaks probably due to the kink structure introduced by BHET oligomer and relatively large free volume by bulky BHNPT and BHNPS oligomers. The copolyester samples with half of BHET oligomer substituted by BHNPT while keeping BHEI (0.3 mole) and BHNPS (0.1 mole) ratio constant showed glass transition temperature above $40^{\circ}C$ and good solubility in toluene both at low ($-5^{\circ}C$) temperature and room temperature.

  • PDF

Preparation and Properties of Aromatic Polybenzoxazoles with high char yields (높은 char 수득률를 갖는 방향족 polybenzoxazoles의 제조 및 특성)

  • Sohn, Jun-Youn;Moon, Sung-Chul;Yoon, Doo-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.238-248
    • /
    • 2007
  • A series of polyhydroxyamides(PHAs) having ether linkages in the polymer backbone were prepared via solution polycondensation at low temperature. These polymers were studied by FT-IR, $^1H-NMR$, DSC, TGA and PCFC. The PHAs exhibited inherent viscosities in the range of $0.5{\sim}1.1dL/g\;at\;35^{\circ}C$ in DMAc solution. Most of PHAs except PHA 3 were soluble in polar organic solvents such as N,N-dimethylacetamide(DMAc), N-methyl-2-pyrrolidone(NMP), and N,N-dimethylform-amide(DMF). Subsequent thermal treatment of PHAs afforded polybenzoxazols(PBOs). However, the PBOs were insoluble in a variety of solvents. Most of the PBOs except PBO 3 showed glass-transition temperature($T_g$) in the range of $200{\sim}246^{\circ}C$ by DSC and maximum weight loss temperature in the range of $597{\sim}697^{\circ}C$ in nitrogen by TGA. PBOs showed high char yields in the range of $51{\sim}64%$. PCFC results of the PBOs showed the heat release(HR) capacity, $8{\sim}65J/gK$ and total heat release(total HR), $2.4{\sim}4.7kJ/g$.

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Experimental Study on the Thermal Characteristics According to the Content Change of Biodiesel Mixture (바이오디젤 혼합물의 함량변화에 따른 열적 특성에 대한 실험적인 연구)

  • Ju Suk Kim;Jae Sun Ko
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.532-544
    • /
    • 2023
  • Purpose: To identify and evaluate the risk of chemical fire causative substances by using thermal analysis methods (DSC, TGA) for the hazards and physical property changes that occur when newly used biofuels are mixed with existing fuels It is to use it for identification and evaluation of the cause of fire by securing data related to the method and the hazards of the material according to it. Method: The research method used in this experiment is the differential scanning calorimeter (DSC: Difference in heat flux) through quantitative information on the caloric change from the location, shape, number, and area of peaks. flux) was measured, and the weight change caused by decomposition heat at a specific temperature was continuously measured by performing thermogravimetric analyzer (TGA: Thermo- gravimetric Analyzer). Result: First, in the heat flux graph, the boiling point of the material and the intrinsic characteristic value of the material or the energy required for decomposition can be checked. Second, as the content of biodiesel increased, many peaks were identified. Third, it was confirmed through analysis that substances with low expected boiling points were contained. Conclusion: It was shown that the physical risk of the material can be evaluated by using the risk of biodiesel, which is currently used as a new energy source, through various physical and chemical analysis techniques (DSC + TGA).In addition, it is expected that the comparison of differences between test methods and the accumulation and utilization of know-how on experiments in this study will be helpful in future studies on physical properties of hazardous materials and risk assessment of materials.

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment (옥사디아졸 결합의 유기 발색단이 도입된 이차비선형 광학 이미드 고분자)

  • Do, Jung Yun;Kim, Bong Gun;Kwon, Ji-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.

Chemo-mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine(EDA, HMDA) Resin Casting Systems (DGEBA/선형 아민(EDA, HMDA) 경화제의 주쇄 탄소숫자와 물성과의 관계에 대한 연구)

  • Myung, In-Ho;Chung, In-Jae;Lee, Jae-Rock
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.990-995
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with ethylene diamine(EDA) and hexamethylene diamine(HMDA) in a stoichiometrically equivalent ratio. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure or chain length of curing agents. In contrast, the results show that the DGEBA/EDA system having the two carbons had higher values in the thermal stability, maximum conversion of epoxide, density, glass transition temperature, tensile modulus, flexural strength, and flexural modulus than the DGEBA/HMDA system having the six carbons, whereas the DGEBA/EDA cure system had relatively low values in the shrinkage(%), thermal expansion coefficient, tensile strength, and had similar values in the maximum exothermic temperature, and conversion of epoxide compared to the DGEBA/HMDA cure system. This findings indicate that packing ability in the HMDA structure affects the thermal and mechanical properties.

  • PDF

Syntheses of 70% Solids Acrylic Resin and Comparative Study in Physical Properties as Acrylic Urethane Resin Coatings (고형분 70% 아크릴수지 합성과 아크릴-우레탄 도료의 도막물성 비교 연구)

  • Kim, Seong-Kil;Park, Hyong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.476-487
    • /
    • 2021
  • To prepare acrylic resin coatings containing 70% of solids, we used n-butyl methacrylate(BMA), methyl methacrylate(MMA), 2-hydroxyethyl methacrylate(2-HEMA), and acetoacetoxyethyl acrylate(AAEA), caprolactone acrylate(CLA) as raw materials, the glass transition temperature(Tg) of acrylic copolymer was adjusted around 50 ℃. The viscosity and molecular weight of the acrylic resins was increased with increasing OH values. Di-tert-amyl peroxide was found to be the suitable initiator to get high-solids acrylic resins. The optimum reaction conditions found in the study are 5 wt% of initiator, 4 wt% of chain transfer agent, 4 hrs of dropping time, and 140 ℃ of reaction temperature. The structure of the synthesized resins were characterized by FT-IR and 1H-NMR spectroscopy. Number average molecular weight of 1900~2600 and molecular wight distribution of 1.4~2.1 were obtained. Crosslinked acrylic urethane clear coatings were obtained by curing reaction between the synthesized acrylic resins and hexamethylene diisocyanate trimer(Desmodur N-3300), the equivalent ratio of NCO/OH was 1.2/1.0. The physical properties from the following studies were carried out: viscosity(Zahn cup #2), adhesion, drying time, pot-life, pensil hardness, and 60° specular gloss. Various properties of the acrylic urethane clear coatings were also evaluated on the coating specimens. Adhesion property to a substrate, drying time, pot-life, pencil hardness, and 60° specular gloss of prepared paint showed quite good properties. Futhermore, prepared paint containing 10% of CLA showed quite good properties for adhesion, low viscosity and high hardness.

Reliability Assessment of Flexible InGaP/GaAs Double-Junction Solar Module Using Experimental and Numerical Analysis (유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구)

  • Kim, Youngil;Le, Xuan Luc;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.75-82
    • /
    • 2019
  • Flexible solar cells have attracted enormous attention in recent years due to their wide applications such as portable batteries, wearable devices, robotics, drones, and airplanes. In particular, the demands of the flexible silicon and compound semiconductor solar cells with high efficiency and high reliability keep increasing. In this study, we fabricated a flexible InGaP/GaAs double-junction solar module. Then, the effects of the wind speed and ambient temperature on the operating temperature of the solar cell were analyzed with the numerical simulation. The temperature distributions of the solar modules were analyzed for three different wind speeds of 0 m/s, 2.5 m/s, and 5 m/s, and two different ambient temperature conditions of 25℃ and 33℃. The flexibility of the flexible solar module was also evaluated with the bending tests and numerical bending simulation. When the wind speed was 0 m/s at 25 ℃, the maximum temperature of the solar cell was reached to be 149.7℃. When the wind speed was increased to 2.5 m/s, the temperature of the solar cell was reduced to 66.2℃. In case of the wind speed of 5 m/s, the temperature of the solar cell dropped sharply to 48.3℃. Ambient temperature also influenced the operating temperature of the solar cell. When the ambient temperature increased to 33℃ at 2.5 m/s, the temperature of the solar cell slightly increased to 74.2℃ indicating that the most important parameter affecting the temperature of the solar cell was heat dissipation due to wind speed. Since the maximum temperatures of the solar cell are lower than the glass transition temperatures of the materials used, the chances of thermal deformation and degradation of the module will be very low. The flexible solar module can be bent to a bending radius of 7 mm showing relatively good bending capability. Neutral plane analysis was also indicated that the flexibility of the solar module can be further improved by locating the solar cell in the neutral plane.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.