Browse > Article

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment  

Do, Jung Yun (Department of Advanced Materials for Information and Display and Department of Chemistry Education, Pusan National University)
Kim, Bong Gun (Department of Advanced Materials for Information and Display and Department of Chemistry Education, Pusan National University)
Kwon, Ji-Yun (Department of Advanced Materials for Information and Display and Department of Chemistry Education, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.18, no.1, 2007 , pp. 77-83 More about this Journal
Abstract
It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.
Keywords
dipolar chromophore; nonlinear optic polymer; low optical loss; side chain polyimide;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. S. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M. H. Lee, Chem. Phys. Lett., 417, 277 (2005)   DOI
2 A. Otomo, M. Jger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, Appl. Phys. Lett., 69, 1991 (1996)   DOI   ScienceOn
3 A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, S. R. Marder, K. Staub, G. Levina, and R. J. Twieg, J. Appl. Phys., 94, 756 (2003)
4 O. Mitsunobu, Synthesis, 1 (1981)
5 H. J. Lee, M. H. Lee, S. G. Han, H. Y. Kim, J. H. Ahn, E. M. Lee, and Y. H. Won, J. Polym. Sci. A Polym. Chem., 36, 301 (1998)
6 L. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, Ind. Eng. Chem. Res., 38, 8 (1999)   DOI   ScienceOn
7 J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M. H. Lee, Macromol. Chem. Phys., 204, 410 (2003)   DOI   ScienceOn
8 C. Bosshard, K. Sutter, P. Prtre, J. Hulliger, M. Flrsheimer, P. Kaatz, and P. Gnter, Organic Nonlinear Optical Materials, Gorden and Breach Publishers, Amsterdam, Chapter 3 (1995)
9 A. Otomo, M. Jger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, Appl. Phys. Lett., 69, 1991 (1996)   DOI   ScienceOn
10 C. C. Teng, Appl. Opt., 32, 1051(1993)
11 J. J. Ju, S. Park, J. Y. Do, S. K. Park, and M.-H. Lee, Optical Materials, 21, 549 (2002)
12 G. Martin, O. Alibart, R. Hierle, D. Josse, P. Baldi, and J. Zyss, J. Appl. Phys., 96, 7112 (2004)   DOI   ScienceOn
13 J. J. Ju, S. K. Park, S. Park, J. Kim, M. S. Kim, M. H. Lee, and J. Y. Do, Appl. Phys. Lett., 88, 241106 (2006)   DOI   ScienceOn
14 N. Tamoto, C. Adachi, and K. Nagai, Chem. Mater., 9, 1077 (1997)
15 Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science, 288, 199 (2000)
16 B. Ramamurthy and B. Mukherjee, IEEE J. Sel. Areas Commun., 16, 1061 (1998)