• Title/Summary/Keyword: Low frequency radar

Search Result 171, Processing Time 0.025 seconds

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Automatic modulation classification of noise-like radar intrapulse signals using cascade classifier

  • Meng, Xianpeng;Shang, Chaoxuan;Dong, Jian;Fu, Xiongjun;Lang, Ping
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.991-1003
    • /
    • 2021
  • Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at -2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

Ship Positioning Estimation Using Phased Array Antenna in FMCW Radar System for Small-Sized Ships (소형 선박용 FMCW 레이더 시스템에서의 위상 배열 안테나를 사용한 선박의 위치 추정)

  • Lee, Seongwook;Lee, Seong Ro;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1130-1141
    • /
    • 2015
  • Conventionally, a pulse radar is used for middle-sized or large-sized ships to detect other ships or obstacles located at a long distance. However, it is hardly equipped for most of the small-sized ships due to mounting and maintenance costs. Therefore, FMCW(frequency modulated continuous wave) radar is suggested as an alternative for the small-sized ships. Since it operates with low power and has good range resolution for relatively close objects, it is eligible for the small-sized ships. In previously proposed FMCW radar system, it only estimates distance and velocity of a target ship placed in the direction of main beam and is hard to detect several ships simultaneously. Thus, we suggest the method for detecting several ships at the same time by applying MUSIC(multiple signal classification) algorithm to FMCW radar signal received by a phased array antenna. In addition, by combining digital beam forming with the MUSIC algorithm, better angle resolution is achievable.

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

Design of Low-complexity FFT Processor for Multi-mode Radar Signal Processing (멀티모드 레이다 신호처리를 위한 저복잡도 FFT 프로세서 설계)

  • Park, Yerim;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, a multi-mode radar system was designed for efficient operation of unmanned aerial vehicles (UAVs) in various environments, which has the advantage of being able to integrate and utilize methods of the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar. For the range detection part of the multi-mode radar signal processor (RSP), the hardware structure using the FFT processor and the IFFT processor is required to be designed in a way that improves efficiency on the area side. In addition, given the radar application environment that requires a variety of distance resolutions, FFT processors need to support variable-length operations. In this paper, the FFT processor and IFFT processor in multi-mode RSP range estimation are designed and proposed as hardware for a single FFT processor that supports variable length operation of 16-1024 points. The proposed FFT processor designed in hardware description language (HDL) and can be implemented with 7,452 logic elements and 5,116 registers.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

A Study on the Measurement of the Beam Pattern of Array Antenna for VHF Radar using Active Beam Pattern Measuring Device and Drone (능동 빔패턴 측정장치 및 드론을 활용한 초단파레이다용 배열안테나의 빔패턴 측정에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1031-1036
    • /
    • 2019
  • This study describes the technique of the beam pattern measurement of array antenna for VHF band radar using drone and active beam pattern measuring device. There is no anechoic chamber for measuring the beam pattern of a large size antenna in the country. In this study, to test the antenna beam pattern characteristics of the developed VHF band radar, the antenna beam pattern characteristics were tested by Drone mounting an Active Beam Pattern Measuring Device. By comparing the results of the pre-simulation analysis with the measured results for the antenna, we could confirm that the beamwidth and side-lobe characteristics are satisfactory. Through the antenna beam pattern measurement technology using Drone and Active Beam Pattern Measuring Device, the beam pattern measurement technology of array antenna of low frequency band and large antenna for low band radar will be used.

Analysis of Phase Noise Effects in a Short Range Weather Radar (단거리 기상 레이다에서의 위상 잡음 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1090-1098
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are seriously contaminated by the ground clutter. Therefore, the filter removing low Doppler frequency band is generally used to mitigate this problem. However, the phase noise in a radar system may limit the removal of the strong clutter and this may cause serious problems in estimating weather parameters because of the remaining clutter. Therefore, in this paper, the characteristics of phase noise in a radar system are investigated and the effects of the system phase noise are analyzed in the improvement of signal to clutter ratio for the strong clutter environment such as a short and low-elevated weather radar.

Analysis of Sea Clutter Removal Capability in a Weather Radar Based on a Vertical Phased Array Antenna (수직 위상 배열 안테나 기반 기상 레이다에서의 해수면 클러터 제거 성능 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are contaminated by the ground and sea clutter. Since most of ground clutter appears around the very narrow low Doppler frequency region, it is somewhat easy to separate. However, the sea clutter removal is very difficult since it can occupy the broad Doppler frequency region according to weather conditions. Therefore, in this paper, the sea clutter removal capability is analyzed for a phased array weather radar which use vertical array elements for electronic elevation beam steering. Also, it is shown that the sea clutter removal can be achieved appropriately using the receiver beam forming technology in a phased array antenna.