• Title/Summary/Keyword: Low frequency offset

Search Result 306, Processing Time 0.025 seconds

Design of Carrier Recovery Circuit for High-Order QAM - Part II : Performance Analysis and Design of the Gear-shift PLL with ATC(Automatic Transfer-mode Controller) and Average-mode-change Circuit (High-Order QAM에 적합한 반송파 동기회로 설계 - II부. 자동모드전환시점 검출기 및 평균모드전환회로를 적용한 Gear-Shift PLL 설계 및 성능평가)

  • Kim, Ki-Yun;Kim, Sin-Jae;Choi, Hyung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.18-26
    • /
    • 2001
  • In this paper, we propose an ATC(Automatic Transfer mode Controller) algorithm and an average-mode-change method for use in Gear shift PLL which can automatically change loop gain. The proposed ATC algorithm accurately detects proper timing or the mode change and has a very simpler structure - than the conventional lock detector algorithm often used in QPSK. And the proposed average mode change method can obtain low errors of estimated frequency offset by averaging the loop filter output of frequency component in shift register. These algorithms are also useful in designing ASIC, since these algorithms occupy small circuit area and are adaptable for high speed digital processing. We also present phase tracking performance of proposed Gear-shift PLL, which is composed of polarity decision PD, ATC and average mode change circuit, and analyze the results by examining constellation at each mode.

  • PDF

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Application of Correlation-Aided DSA(CDSA) Technique to Fast Cell Search in IMT-2000 W-CDMA Systems.

  • Kim, Byoung-Hoon;Jeong, Byeong-Kook;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.58-68
    • /
    • 2000
  • In this paper we introduce the correlation-aided distributed sample acquisition (CDSA) scheme for fast cell search in IMT-2000 W-CDMA cellular system. The proposed scheme incorporates the state symbol correlation process into the comparison-correction based synchronization process of the original DSA scheme to enable fast acquisition even under very poor channel environment. for its realization, each mobile station (MS) has to store in its memory a set of state sample sequences. which are determined by the long-period scrambling sequences used in the system and the sampling interval of the state samples. CDSA based cell search is carried out in two stages : First, the MS first acquires the slot timing by using the primary synch code (PSC) and then identifies the igniter code which conveys the state samples of the current cell . Secondly. the MS identifies the scrambling code and frame timing by taking the comparison-correction based synchronization approach and, if the identification is not done satisfactorily within preset time. it initiates the state symbol correlation process which correlates the received symbol sequence with the pre-stored state sample sequences for a successful identification. As the state symbol SNR is relatively high. the state symbol correlation process enables reliable synchronization even in very low chip-SNR environment. Simulation results show that the proposed CDSA scheme outperforms the 3GPP 3-step approach, requiring the signal power of about 7 dB less for achieving the same acquisition time performance in low-SNR environments. Furthermore, it turns out very robust in the typical synchronization environment where large frequency offset exists.

  • PDF

Design of Quadrature CMOS VCO using Source Degeneration Resistor (소스 궤환 저항을 이용한 직교 신호 발생 CMOS 전압제어 발진기 설계)

  • Moon Seong-Mo;Lee Moon-Que;Kim Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1184-1189
    • /
    • 2004
  • A new schematic of quadrature voltage controlled oscillator(QVCO) is designed and fabricated. To obtain quadrature characteristic and low phase noise simultaneously, two differential VCOs are forced to un in quadrature mode by using coupling amplifier with a source degeneration resistor, which is optimized to obtain quadrature accuracy with minimum phase noise degradation. The designed QVCO was fabricated in standard CMOS technology. The measured performance showed the phase noise of below -120 dBc/Hz at 1 MHEz frequency offset, tuning bandwidth of 210 MHz from 2.34 GHz to 2.55 GHz with a tuning voltage varying form 0 to 1.8 V Quadrature error of 0.5 degree and amplitude error of 0.2 dB was measured with conjunction with low-lF mixer. The fabricated QVCO requires 19 mA including 5 mA in the VCO core part fiom a 1.8 V supply.

Low Phase Noise VCO Using Novel Harmonic Control Circuit Based on Composite Right/Left-Handed Transmission Line (혼합 우좌향 전송 선로 기반의 새로운 고조파 조절 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.84-90
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the harmonic control circuit based on the composite right/left-handed (CRLH) transmission lines (TLs) is presented to reduce the phase noise without the reduction of the frequency tuning range and miniaturize the circuit size. The phase noise is reduced by the novel harmonic control circuit having the short impedances for the second- and third-harmonic components. The proposed harmonic control circuit is designed by using the CRLH TLs with the dual-band characteristic by the frequency offset and phase slope of the CRLH TLs. The high-Q resonator has been used to reduce the phase noise, but has the problem of the frequency tuning range reduction. However, the frequency tuning range of the proposed VCO has not been reduced because the phase noise has been reduced without the high-Q resonator. The miniaturization of the circuit size is achieved by using the CRLH TLs instead of the conventional right-handed (RH) TLs. The phase noise of VCO is -119.17 ~ -117.50 dBc/Hz at 100 kHz in the tuning range of 5.731 ~ 5.938 GHz.

Design and Fabrication of on Oscillator with Low Phase Noise Characteristic using a Phase Locked Loop (위상고정루프를 이용한 낮은 위상 잡음 특성을 갖는 발진기 설계 및 제작)

  • Park, Chang-Hyun;Kim, Jang-Gu;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.847-853
    • /
    • 2006
  • In this paper, we designed VCO(voltage controlled oscillator} that is composed of a dielectric resonator and a varactor diode, and the PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The results at 12.05 GHz show the output power is 13.54 dBm frequency tuning range approximately +/- 7.5 MHz, and power variation over the tuning range less than 0.2 dB, respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 dBc/Hz at 100 kHz offset from carrier, and The second harmonic suppression is less than -41.49 dBc. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

Design of a Novel Instrumentation Amplifier using Current-conveyor(CCII) (전류-컨베이어(CCII)를 사용한 새로운 계측 증폭기 설계)

  • CHA, Hyeong-Woo;Jeong, Tae-Yun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.80-87
    • /
    • 2013
  • A novel instrumentation amplifier(IA) using positive polarity current-conveyor(CCII+) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of two CCII+, three resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into two CCII+ used voltage and current follower converts into same currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the CCII+ and used commercial op-amp LF356. Simulation results show that voltage follower used CCII+ has offset voltage of 0.21mV at linear range of ${\pm}$4V. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the gain of 60dB was 400kHz. The IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 130mW at supply voltage of ${\pm}$5V.

Design of a LTCC Front End Module with Power Detecting Function (전력 검출 기능을 포함하는 LTCC 프런트 엔드 모듈 설계)

  • Hwang, Mun-Su;Koo, Jae-Jin;Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal;Yang, Gyu-Yeol;Kim, Jun-Chul;Kim, Dong-Su;Park, Ung-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.844-853
    • /
    • 2008
  • This paper describes the design of a FEM(Front End Module) having power detection function for mobile handset application. The designed FEM consists of a MMIC(Monolithic Microwave Integrated Circuits) power amplifier chip, SAW Tx filter and duplexer, diode power detector and stripline matching circuit. An LTCC(Low Temperature Co-fired Ceramics) technology is adopted for miniaturized FEM. The frequency band is $824{\sim}869$ MHz which is the uplink Tx band of the CDMA mobile system. The size of designed FEM is $7.0{\times}5.5{\times}1.5\;mm^3$, which is an ultra-small size even though the power detector circuit is included. All sub-components of FEM have been developed and measured in advance before being integrated into FEM. The measured output power and gain are 27 dBm and 27 dB, respectively. In addition, the measured ACPR characteristics are 46.59 dBc and 55.5 dBc at 885 kHz and 1.98 MHz offset, respectively.