• Title/Summary/Keyword: Low energy building

Search Result 542, Processing Time 0.024 seconds

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

A Study on the Insulation Performance of the Super window considering the evaluation of Building Energy Rating (지역별 건물에너지 효율에 관한 슈퍼윈도우 단열 성능 평가 연구)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy is expected to be possible to reduce energy demand more than other section. To reduce the building energy consumption, this study analyzes function and thermal performance of Super window by heat experimental apparatus. Super window is a 2-track low-e glazing window for high insulation efficiency. By applying the results of this experiment to building energy efficience rating tool, this study compares energy efficiency rates depending on a region.-Jeju, South, Central. And it shows how much does Super window reduce Building energy consumption.

Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages (BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발)

  • Ryu, Han-Soo;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

Developing a BIM-Based Methodology Framework for Sustainability Analysis of Low Carbon High-Rise Buildings

  • Gan, Vincent J.L.;Li, Nan;Tse, K.T.;Chan, C.M.;Lo, Irene M.C.;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.14-23
    • /
    • 2017
  • In high-density high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, to achieve lower carbon emissions in the city. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). An integrated analysis of both types of carbon emissions can strengthen the design of low carbon buildings, but most of the previous studies concentrated mainly on either embodied or operational carbon. Therefore, the primary objective of this study is to develop a holistic methodology framework considering both embodied and operational carbon, in order to enhance the sustainable design of low carbon high-rise buildings. The framework will be based on the building information modeling (BIM) technology because BIM can be integrated with simulation systems and digital models of different disciplines, thereby enabling a holistic design and assessment of low carbon buildings. Structural analysis program is first coupled with BIM to validate the structural performance of a building design. The amounts of construction materials and embodied carbon are then quantified by a BIM-based program using the Dynamo programming interface. Operational carbon is quantified by energy simulation software based on the green building extensible Markup Language (gbXML) file from BIM. Computational fluid dynamics (CFD) will be applied to analyze the ambient wind effect on indoor temperature and operational carbon. The BIM-based framework serves as a decision support tool to compare and explore more environmentally-sustainable design options to help reduce the carbon emissions in buildings.

  • PDF

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

Construction Equipment Fleet Optimization for Saving Fuel Consumption (에너지 절감을 위한 건설장비 조합 최적화 방법 연구)

  • Yi, Chang-Yong;Lee, Hong-Chul;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF

Comparison on the Economical Efficiency of the Multiple Glazed Windows According to Life Cycle Costing of an Officetel Model Building (오피스텔 모델건물의 생애주기비용 분석에 의한 다층유리창 경제성 비교)

  • Jung Gun-Joo
    • Journal of the Korean housing association
    • /
    • v.17 no.4
    • /
    • pp.101-109
    • /
    • 2006
  • The purpose of this study was to suggest ways on reducing the cooling and heating energy cost of the officetel building with the multiple glazing windows according to Life Cycle Costing. This study consisted of an hour-by hour energy simulation program and further data from the EnergyPlus V1-2-2 to the four pane type windows that were applied with 2 low-e polyester film and krypton gas to the officetel model building. It was determined that the four panes type windows that had 2 low-e polyester film and krypton gas applied to, them showed a cooling and heating cost reduction over traditional double glazed windows that were filled with air. According to this study, as well as the information from chart 4.5 and the LCC it was determined that the present value of the four panes of windows that had 2 low-e polyester film and krypton gas applied to them showed. a 11.4% reduction in heating and cooling in comparison to the traditional double glazed windows that were filled with air.

An Analysis on Building Energy Reduction Effect of Exterior Venetian Blind According to Orientation and Reflectance of Slat (블라인드형 외부차양의 종류 및 반사율에 따른 건물에너지 저감효과 분석)

  • Kim, Jin-Ah;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.28-34
    • /
    • 2013
  • It is essential to reduce building energy consumption in office building because government enact policy which encourages building energy certification from 2013. Office building has high cooling energy demand due to large glazed area of facade in these days. Shading devices can be an alternative of reducing high cooling energy demand. So, this study simulated a variety of exterior venetian blinds to know how much building energy be affected by orientation and reflectance of slat. The results of this study are based on Seoul weather data. The following is a summary of this study. 1) As a slat of venetian blinds has the lower reflectance, the more building energy reduced. Reflectance is usually affected by color and material of slat. In case reflectance is 0.2 reduce 4% of building energy than reflectance is 0.8. 2) Horizontal exterior venetian blinds are more effective than vertical exterior venetian blinds in all of orientation. Horizontal shape is average 16% more effective in shading effect than vertical shape. 3) In this case study, the most effective shading device is low reflectance horizontal exterior venetian blinds that result about 18% building energy reduction than no shade model. The results of this research can be used to plan shading devices for energy conservative office building.

A Pilot Project on the Integrated System Design for Developing the Sustainable Housing Model (친환경 공동주택 구현을 위한 저에너지 설비시스템 통합설계 방안 및 파일럿 프로젝트 계획)

  • Cho, Jin-Kyun;Sung, Jae-Ho;Shin, Seon-Joon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1049-1054
    • /
    • 2009
  • Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.

  • PDF