• Title/Summary/Keyword: Low delay

Search Result 1,838, Processing Time 0.026 seconds

Fabrication of Phased Array EMAT and Its Characteristics (위상배열 EMAT의 제작 및 특성 평가)

  • Ahn, Bong-Young;Cho, Seung-Hyun;Kim, Young-Joo;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2010
  • EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively.

Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control (공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구)

  • Shin, Yun-Ho;Oh, Ki-Yong;Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.72-79
    • /
    • 2007
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the tine delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

An Improved Design Method of FIR Quadrature Mirror-Image Filter Banks (개선된 FIR QMF 뱅크의 설계 방법)

  • 조병모;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.213-221
    • /
    • 2004
  • A new method for design of two-channel finite-impulse response(FIR) quadrature mirror-image filter(QMF) banks with low reconstruction delay using weighting function is proposed. The weighting function used in this paper is calculated from the previous updated filter coefficients vector which is adjusted from iteration to iteration in the design of QMF banks. In this paper, passband and stopband edge frequency are used in design of QMF banks with low delay characteristic in time domain instead of specific frequency interval where the artifacts occur in conventional design method. The investigation of specific frequency interval where artifacts occur can not be required by using passband and stopband edge frequency. Some comparisons of performance are made with other existing design method to demonstrate the proposed method for QMF bank design. and it was observed that the proposed method using the weighted function and passband and stopband edge frequency improves the peak reconstruction error by 0.001 [dB], the peak-to-peak passband ripple by 0.003[dB], SNR with a white noise by 7[dB] and SNR with a step input by 32[dB], but with a reduction of the computational efficiency because of updating the weighting function over the conventional method in Ref [11].

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

Memory Reduction Method of Radix-22 MDF IFFT for OFDM Communication Systems (OFDM 통신시스템을 위한 radix-22 MDF IFFT의 메모리 감소 기법)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • In OFDM-based very high-speed communication systems, FFT/IFFT processor should have several properties of low-area and low-power consumption as well as high throughput and low processing latency. Thus, radix-2k MDF (multipath delay feedback) architectures by adopting pipeline and parallel processing are suitable. In MDF architecture, the feedback memory which increases in proportion to the input signal word-length has a large area and power consumption. This paper presents a feedback memory size reduction method of radix-22 MDF IFFT processor for OFDM applications. The proposed method focuses on reducing the feedback memory size in the first two stages of MDF architectures since the first two stages occupy about 75% of the total feedback memory. In OFDM transmissions, IFFT input signals are composed of modulated data and pilot, null signals. In order to reduce the IFFT input word-length, the integer mapping which generates mapped data composed of two signed integer corresponding to modulated data and pilot/null signals is proposed. By simulation, it is shown that the proposed method has achieved a feedback memory reduction up to 39% compared to conventional approach.

M/G/1 Preemptive Priority Queues With Finite and Infinite Buffers (유한 및 무한 용량 대기열을 가지는 선점 우선순위 M/G/1 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.1-14
    • /
    • 2020
  • Recently, M/G/1 priority queues with a finite buffer for high-priority customers and an infinite buffer for low-priority customers have applied to the analysis of communication systems with two heterogeneous traffics : delay-sensitive traffic and loss-sensitive traffic. However, these studies are limited to M/G/1 priority queues with finite and infinite buffers under a work-conserving priority discipline such as the nonpreemptive or preemptive resume priority discipline. In many situations, if a service is preempted, then the preempted service should be completely repeated when the server is available for it. This study extends the previous studies to M/G/1 priority queues with finite and infinite buffers under the preemptive repeat-different and preemptive repeat-identical priority disciplines. We derive the loss probability of high-priority customers and the waiting time distributions of high- and low-priority customers. In order to do this, we utilize the delay cycle analysis of finite-buffer M/G/1/K queues, which has been recently developed for the analysis of M/G/1 priority queues with finite and infinite buffers, and combine it with the analysis of the service time structure of a low-priority customer for the preemptive-repeat and preemptive-identical priority disciplines. We also present numerical examples to explore the impact of the size of the finite buffer and the arrival rates and service distributions of both classes on the system performance for various preemptive priority disciplines.

Design of Enhanced IEEE 1500 Wrapper Cell and Interface Logic For Transition Delay Fault Test (천이 지연 고장 테스트를 위한 개선된 IEEE 1500 래퍼 셀 및 인터페이스 회로 설계)

  • Kim, Ki-Tae;Yi, Hyun-Bean;Kim, Jin-Kyu;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.109-118
    • /
    • 2007
  • As the integration density and the operating speed of System on Chips (SoCs) become increasingly high, it is crucial to test delay defects on the SoCs. This paper introduces an enhanced IEEE 1500 wrapper cell architecture and IEEE 1149.1 TAP controller for the wrapper interface logic, and proposes a transition delay fault test method. The method proposed can detect slow-to-rise and slow-to-fall faults sequentially with low area overhead and short test time. and simultaneously test IEEE 1500 wrapped cores operating at different core clocks.

Performance Analysis of Ionospheric Time Delay for Single-Frequency GPS Users (단일 주파수 GPS 사용자에서의 전리층 전파특성 분석)

  • 박성경;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.1
    • /
    • pp.40-50
    • /
    • 1994
  • Through the low orbit GPS satellite a 3-dimensional real time position detection can be achieved anywhere. Utilizing the GPS satellite detection values an analysis of the varing characteristics of the iono- sphere can be achicved, and by calculating the correlation relationship of the position detection error and the ionospheric time delay characteristics, an advanced algorithm technique can be developed. Computer simulation of the developed algorithm for defining the correlation between the position detec- tion error and the varing ionospheric time delay characteristics has been proceeded. The results of simulation reveal the fact that the varing characteristics of the ionosphere nearly match the actual ionospheric time delay characteristics.

  • PDF

Evaluation of Proposed CSMA/CA Protocol in The Underwater Acoustic Networks (수중 네트워크에서 제안된 CSMA/CA 프로토콜의 평가)

  • Kim, Lack-Hoon;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The purpose of this paper is to propose a CSMA/CA protocol to reduce the delay time and increase the throughput of the original CSMA/CA protocol. In underwater environments, the efficiency of the protocol is reduced due to the increase of the propagation delay time, which results in increase of the collision possibility causing lowering of the transmission efficiency Considering this propagation delay, this paper propose to insert the STANDBY frame in a CTS packet in order to avoid the TimeOut status of the CSMA/CA protocol. According to the simulated test results, proposed protocol is increased about 20% throughput than original CSMA/CA protocol. And the more value of propagation per transmission delay 'a' is low, the more throughput of protocol is better.

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.