• Title/Summary/Keyword: Low carbon

Search Result 4,359, Processing Time 0.034 seconds

A study on the relationship between economic growth and carbon emission of logistics industry in Tumen River region (두만강지역 경제성장과 물류업탄소배출의 관계분석)

  • Chi, zehang;Li, Guangzhu;Li, Longzhen
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • In this paper, the relationship between energy consumption in the logistics industry and economic growth of Tumen River region from 1995 to 2014 is empirically analyzed by using the EKC model theory. The results show that there is a turning point in the Kuznets curve of carbon emission in TumenRiverregion. And it has the characteristic sof "invertedU" curve, which conforms to the environmental Kuznets curve hypothesis. Meanwhile it is stil lintherisingstage. According to the analysis results, it is proposed to set up the concept of low carbon logistics, optimize the energy structure, strengthen the information construction, and establish low-carbon development mechanism and so on.

Effect of Aluminum and Solute N on the Strain Aging of Extremely Low-Carbon Automotive Steel Strengthened with Cu sulfide (초극저탄소 Cu강화형 자동차용 강판 변형시효에 미치는 Aluminum 및 고용질소의 영향)

  • Hong, Moon-Hi;Yang, Hye-mi;Song, Seung-Woo;Han, Seong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • The precipitation behavior of solute carbon and nitrogen strongly affects the mechanical properties of low-carbon automotive panel. In the present study, the effects of aluminum and solute nitrogen on the bake hardenability and strain aging of extremely low-carbon steel with carbon content below 15 ppm has been investigated. The ferrite grain size and distribution of precipitates were varied with the amount of aluminum content of 0.003 to ~ 0.100 wt% in a constant solute carbon and nitrogen. With increasing the aluminum content, the ferrite grain size is increased and strain aging is delayed. The strain aging is also delayed by increasing the annealing temperature, although the ferrite grain size is not much changed.

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

Economic analysis of development of low-carbon trawl gear (탄소저감형 트롤어구 개발의 경제성 분석)

  • Park, Seong-Wook;Lee, Kyoung-Hoon;Kang, Min-Ju;Park, Seong-Kwae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.360-369
    • /
    • 2012
  • The main purpose of this study is to analyse economic feasibility of low-carbon-oriented trawl gear. The results of benefit/cost analysis showed that use of the low-carbon fishing gear is economically feasible. Considering the fuel saving and relatively low $CO_2$ emission by reducing the resistance of gear, net present value by such gear improvement was estimated about 2,430~2,853 million won with the benefit-cost ratio 1.65~1.84 and the internal rate of return 29.18~30.48 percent. Development of low-carbon trawl gear would render significant contributions to reducing $CO_2$ emission in fishing operations and lead to reduce fishing costs due to fuel savings.

A Study on Analyzing Eco-efficiency of Carbon Labeled Building Materials - Focused on Floor Finishes - (탄소성적표시 건축 재료의 환경 효율성 분석 연구 - 바닥 마감재를 중심으로 -)

  • Choi, Ji-Hye;Lee, Yoon-Sun;Kim, Jae-Jun
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • In recent years, Korean government has focused on improving the environmental impact of products in order to reduce greenhouse gas emissions and to achieve their energy goals. The government has been conducting the following polices such as green procurement inducement and certification system. After carbon labeling was conducted in 2009, among a total of 1,065 items, 97 building materials have been given a certification: finishing materials items have the highest weight (56%). The increase in the certification numbers shows that there has been considerable technical efforts in the building material industry. At the awareness of carbon label and purchase of low carbon product, however, customers are aware of carbon labeling but the purchasing rate of carbon product is low. In this paper, we suggest that low carbon activities must also be considered in order to create client value by adding the concept of ecological efficiency. The objective of this study to measurer the eco-efficiency of carbon labeled building materials on the basis of environmental aspects of the product with the perspective of economy for purchasing the excellent products.

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

An analysis of the fuel saving effect during low carbon flight procedures (저탄소 운항절차에 따른 연료절감 효과분석)

  • Kim, Yongseok;Lee, Juhyung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • The amount of greenhouse gas (GHG) emissions has been increasing steadily over the last 4 years, averaging 6.8 percent a year, due to the growth of low cost carriers and the increased demand for air transportations. For the aviation GHG reduction, various fuel saving activities are implemented in many areas such as high-efficiency aircraft and bio-fuel development in the technical part and low carbon flight procedures, short cut route development in the operational approach. Among the various reduction technologies, we focused on low carbon flight procedures that are crucial to GHG reduciton and suggested a reduction effect according to target implementation rate using by fuel saving estimation data in each aircraft type.

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.