• Title/Summary/Keyword: Low Temperature Cofired Ceramics

Search Result 22, Processing Time 0.028 seconds

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (IV) Metallizing by Using Cu Powder Coated by Sol-Gel Method (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(IV) Sol-Gel법으로 코팅한 Cu분말을 이용한 Metallizing)

  • 김병호;문성훈;이근헌;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.427-435
    • /
    • 1994
  • Cu-metallized low firing temperature substrates were synthesized by cofiring green sheet of cordierite-based glass with Cu. By Sol-Gel method, Cu powder was coated with borosilicate gel which should act as a glass frit in Cu paste during cofiring. Theoretical weight ratios of Glass/Cu were controlled to be 2.5, 5, 10 and 15% by varying alkoxide concentrations. Average particle size of coated Cu was 0.629~0.674 ${\mu}{\textrm}{m}$ in comparison to that of as-received Cu(0.596 ${\mu}{\textrm}{m}$), which increased with alkoxide concentration but did not increase above certain concentration. The weight ratios of coated layer were 2.11~5.37%. The properties of Cu-metallized low firing temperature substrate, cofired at 90$0^{\circ}C$ for 1h under H2/N2 atmosphere, were as follows; sheet resistance was 13~43 m{{{{ OMEGA }}/$\square$, adhesion strength was 1.0~2.1 kgf/$\textrm{mm}^2$. From the observations of SEM photographs, the gel coated on Cu performed excellently as a glass frit.

  • PDF

A micro DC-DC converter using LTCC technology (LTCC 기술을 이용한 초소형 전원 모듈)

  • Choi, Dong-Chan;Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.193-196
    • /
    • 2003
  • This paper describes a micro DC-DC converter using LTCC(Low Temperature Cofired Ceramics) technology. We have designed a inductor, an embedded structure to maximize the effect of miniaturizing, and applied the Neumann's formula to calculate inductance. Also, we have implemented a micro DC-DC conveter of which whole volume is $13{\times}18{\times}0.13[mm^3]$ by embeding other passive components such as resistors and capacitors.

  • PDF

Development of a 50W Powered Ceramic Micro Reformer Equiped with PROX Reactor (PROX 반응기가 있는 50W급 세라믹재질의 소형 reformer 개발)

  • Chung C.H.;Kim W.J.;Oh J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.225-229
    • /
    • 2005
  • We have designed micro-fuel processor system, which consists of a steam reforming area and a PROX(preferential oxidation) area. Micro-fuel processor system generates $H_2$ rich gas from a methanol. In our experiment, we have integrated micro-fuel processor system using low temperature cofired ceramics (LTCC) process because LTCC is superior to other materials principally due to their high thermal and chemical stability, simpler fabrication processes, and lower materials cost. Therefore, we have studied and integrated micro-fuel processor system containing embedded heaters, cavities, and 3D structures of micro-channel with LTCC. Also we have optimized the LTCC process.

  • PDF

Low Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15 Ceramics (Ba5Nb4O15 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Kim, Jong-Dae;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.783-787
    • /
    • 2004
  • Microwave dielectric properties and the microstructure of $Ba_5Nb_4O_{15}$ ceramics with $PbO-B_2O_3-SiO_2$ glass frit were investigated to reduce the sintering temperature of $Ba_5Nb_4O_{15}$ ceramics as a function of the amount of glass frit from $0.5wt\%$ to $10wt\%$ and the sintering condition. The sintered density and the microwave dielectric properties of $Ba_5Nb_4O_{15}$ ceramics were remarkably changed with the amount of glass fit which existed as a liquid phase and assisted the densification. $Ba_5Nb_4O_{15}$ with $3wt\%$ $PbO-B_2O_3-SiO_2$ glass frit sintered at $900^{\circ}C$ for 2 h showed dielectric constant (K) of 41.4, a quality factor (Q $\times$f) of 13,485 GHz, and a Temperature Coefficient of resonant Frequency (TCF) of 9 ppm/$^{\circ}C$. Due to no trace of physical and chemical reaction between this composition and Ag electrode cofired at $900^{\circ}C$ for 2 h, this ceramics can be a good candidate for the multilayer dielectric filter.

Characterization of Embedded Thick Film Capacitor in LTCC Substrate (유전체 Paste를 이용한 LTCC 내장형 후막 Capacitor 제작 및 평가)

  • Cho, Hyun-Min;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.760-763
    • /
    • 2003
  • Low Temperature Cofired Ceramics (LTCC) technology is a promising technology to integrate many devices in a module by embedding passive components. For the module substrate, most LTCC structures have dielectric constants below 10 to reduce signal delay time. Some components, which need high dielectric constants, have not been yet embedded in LTCC module. So, embedding capacitor with high capacitance by applying another dielectrics with high dielectric constants in LTCC is an important issue to maximize circuit density in LTCC module. In this study, electrical properties of embedded capacitor fabricated by dielectric paste of high dielectric constants (K-100) and co-firing behavior with LTCC were investigated. To prevent camber development of co-fired structure, constrained sintering process was tested. Dielectric properties of embedded capacitors were calculated from their capacitance and impedance value. Temperature coefficient of capacitance were also measured.

  • PDF

State-of-the-Art mmWave Antenna Packaging Methodologies

  • Hong, Wonbin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • Low-Temperature-cofired ceramics (LTCC) antenna packages have been extensively researched and utilized in recent years due to its excellent electrical properties and ease of implementing dense package integration topologies. This paper introduces some of the key research and development activities using LTCC packaging solutions for 60 GHz antennas at Samsung Electronics [1]. The LTCC 60 GHz antenna element topology is presented and its measured results are illustrated. However, despite its excellent performance, the high cost issues incurred with LTCC at millimeter wave (mmWave) frequencies for antenna packages remains one of the key impediments to mass market commercialization of mmWave antennas. To address this matter, for the first time to the author's best knowledge this paper alleviates the high cost of mmWave antenna packaging by devising a novel, broadband antenna package that is wholly based on low-cost, high volume FR4 Printed Circuit Board (PCB). The electrical properties of the FR4 substrate are first characterized to examine its feasibility at 60 GHz. Afterwards a compact multi-layer antenna package which exhibits more than 9 GHz measured bandwidth ($S_{11}{\leq}-10$ dB) from 57~66 GHz is devised. The measured normalized far-field radiation patterns and radiation efficiency are also presented and discussed.

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

Fabrication and Characterization of Buried Resistor for RF MCM-C (고주파 MCM-C용 내부저항의 제작 및 특성 평가)

  • Cho, H. M.;Lee, W. S.;Lim, W.;Yoo, C. S.;Kang, N. K.;Park, J. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Co-fired resistors for high frequency MCM-C (Multi Chip Module-Cofired) were fabricated and measured their RF properties from DC to 6 GHz. LTCC (Low Temperature Co-fired Ceramics) substrates with 8 layers were used as the substrates. Resisters and electrodes were printed on the 7th layer and connected to the top layer by via holes. Deviation from DC resistance of the resistors was resulted from the resister pastes, resistor size, and via length. From the experimental results, the suitable equivalent circuit model was adopted with resistor, transmission line, capacitor, and inductor. The characteristic impedance $Z_{o}$ of the transmission line from the equivalent circuit can explain the RF behavior of the buried resistor according to the structural variation.

  • PDF

Fabrication of Temperature Stable LTCC with Low Loss (온도 안정성 저손실 LTCC제조)

  • 김용철;이경호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2003
  • ZnWO$_4$shows excellent frequency selectivity due to its high quality factor(Q${\times}$f) at microwave frequencies. However, in order to use ZnWO$_4$as multilayered wireless communication components, its other properties such as sintering temperature(105$0^{\circ}C$). $$\tau$_f$(-70ppm/$^{\circ}C$) and $$\varepsilon$_r$(15.5) should be modified. In present study, TiO$_2$and LiF were used to improve the microwave dielectric and sintering properties of ZnWO$_4$. TiO$_2$ additions to ZnWO$_4$changed $\tau$$_{f}$ from negative to positive value, and also increased $$\varepsilon$_r$, due to its high $$\tau$_f$(+400ppm$^{\circ}C$) and $$\varepsilon$_r$(100). At 20 mol% TiO$_2$ addition, $$\tau$_f$was controlled to near zero ppm/$^{\circ}C$ with $$\varepsilon$_r$=19.4 and Q${\times}$ f=50000GHz. However, the sintering temperature was 110$0^{\circ}C$. LiF addition to the ZnWO$_4$+TiO$_2$ mixture greatly reduced the sintering temperature from 110$0^{\circ}C$ to 85$0^{\circ}C$ due to liquid phase formation. Also LiF addition decreased the $$\tau$_f$value due to its high negative $$\tau$_f$ value. Therefore, by controlling the TiO$_2$and LiF amount. temperature stable LTCC(Low Temperature Cofired Ceramics) material with low loss in the ZnWO$_4$-TiO$_2$-LiF system could be fabricated.d.d.

  • PDF

Properties of Low Temperature Cofired Ceramics Sheets with Binder Content and Laminated Pressure (바인더 함량 및 적층압력 변화에 따른 LTCC 시트 특성)

  • You, Jung-Hun;Yeo, Dong-Hun;Lee, Joo-Sung;Nam, Joong-Hee;Wang, Jong-Hoe;Yoon, Ho-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.278-279
    • /
    • 2006
  • 저온동시소성 다층세라믹스 시트 제조시 바인더 함량과 압력 변화에 따른 적층체의 그린밀도, 적층밀도, 바인더 burn out 후 그린밀도, 소결밀도를 고찰하였다. 바인더 함량이 증가함에 따라 slurrly의 유변학적 변화는 그린시트의 유동성 및 충진율을 변화시켜 그린시트의 밀도에 영향을 주었다. 적층 압력을 5~50MPa로 변화시켰을 때 바인더 함량이 12%로 가장 많은 시트의 경우 적층 후 시트의 밀도는 상대적으로 높은 밀도값을 나타내었으나, 바인더 burn out 후에는 상대적으로 낮은 밀도값을 나타내었다. 바인더 함량 변화에 따른 소결 밀도값은 큰 차이를 보이지 않았다.

  • PDF