• Title/Summary/Keyword: Low Signal Attenuation

Search Result 99, Processing Time 0.021 seconds

Comparison of The Attenuation Measurement Methods for Electromagnetic Partial Discharge Signal in 25.8 kV Gas Insulated Switchgear (25.8 kV GIS에서 전자기파 부분방전신호 감쇠특성 측정방법 비교)

  • Goo, Sun-Geun;Han, Ki-Sun;Kwak, Joo-Sik;Joo, Hyung-Jun;Jeong, Moon-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1281-1287
    • /
    • 2015
  • We report the characteristics and differences of two types of attenuation measurement methods for electromagnetic partial discharge signal in GIS. The pulse method is to measure the attenuated waveforms in time domain and coverts them into frequency domain to get the attenuation spectra of given GIS section. This method simulates the real partial discharge signal. The frequency swept continuous wave method can obtain attenuation spectra directly so that it gives attenuation with low noise floor and simplicity. We show that both methods are effective and exchangeable because the attenuation results measured by two methods have similar trends

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

Negative Group Delay Circuit with Improved Signal Attenuation and Multiple Pole Characteristics

  • Chaudhary, Girdhari;Jeong, Junhyung;Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • This paper presents a design of a transmission line negative group delay (NGD) circuit with multiple pole characteristics. By inserting an additional transmission line into a conventional NGD circuit, the proposed circuit provides further design parameters to obtain wideband group delay (GD) and to help reduce signal attenuation. As a result, the number of gain compensating amplifiers can be reduced, which can contribute to stable operation when integrated into RF systems. The multiple pole characteristics can provide wider NGD bandwidth and can be obtained by connecting resonators with slightly different center frequencies separated by quarter-wavelength transmission lines. For experimental validation, an NGD circuit with two poles GD characteristic is designed, simulated, and measured.

Propagation of Partial Discharge Pulse in High Voltage Motor Stator Windings (고압전동기 고정자 권선에서 부분방전 펄스의 전송)

  • 김희동
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.512-515
    • /
    • 2003
  • This paper is to investigate how partial discharge pulse signal can flow in 6.6㎸ motor stator windings. Pulse propagation is experimentally analyzed in stator windings using a variety of frequency-domain techniques. The experiments were performed on two stator windings in the laboratory. Spectrum analyzer(9KHz to 3㎓) with tracking generator(100kHz to 3㎓) was used. Sweep time of the tracking generator was looms. The frequency spectrum of the response signal was detected by active FET probe(1㎓). The active FET probe has a flat amplitude response up to 1㎓ without high frequency attenuation. The stator winding acts as a low-pass filter below 600KHz, the high-frequency components being highly declined. The resonance peaks show about 1.1MHz and 2MHz in low frequency of No. 1 and No. 2 stator windings, respectively. This low-frequency range indicates that attenuation is low. The peaks of partial discharge magnitude show about 900MHz, 1.6MHz in No. 1 stator winding and about 800KHz, 1.4MHz in No. 2 stator winding.

Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR (SSTDR에서 시간-주파수 상관을 활용한 저압 케이블의 고장 검출)

  • Jeon, Jeong-Chay;Kim, Taek-Hee;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.498-504
    • /
    • 2015
  • This paper proposed an Spread Spectrum Time Domain Reflectometry (SSTDR) using time-frequency correlation analysis in order to have more accurate fault determination and location detection than classical SSTDR despite increased signal attenuation due to the long distance to cable fault location. The proposed method was validated through comparison with classical SSTDR methods in open- and short-circuit fault detection experiments of low-voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.

3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry

  • Jo, Taeyong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2013
  • We have proposed and demonstrated a low numerical aperture technique to measure the depth of through silicon vias (TSVs) using white-light scanning interferometry. The high aspect ratio hole like TSV's was considered to be impossible to measure using conventional optical methods due to low visibility at the bottom of the hole. We assumed that the limitation of the measurement was caused by reflection attenuation in TSVs. A novel interference theory which takes the structural reflection attenuation into consideration was proposed and simulated. As a result, we figured out that the low visibility in the interference signal was caused by the unbalanced light intensity between the object and the reference mirror. Unbalanced light can be balanced using an aperture at the illumination optics. As a result of simulation and experiment, we figured out that the interference signal can be enhanced using the proposed technique. With the proposed optics, the depth of TSVs having an aspect ratio of 11.2 was measured in 5 seconds. The proposed method is expected to be an alternative method for 3-D inspection of TSVs.

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition (포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정)

  • Lee, Hang-Lo;Hong, Chang-Ho;Kim, Jin-Seop;Kim, Ji-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.39-55
    • /
    • 2022
  • This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.

Detection and Location of Cable Fault Using Improved SSTDR (개선된 SSTDR을 이용한 케이블 고장 검출과 위치 계산)

  • Jeon, Jeong-Chay;Kim, Jae-Jin;Choi, Myeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1583-1589
    • /
    • 2016
  • This paper proposes an improved spread spectrum time domain reflectometry (ISSTDR) using time-frequency correlation and reference signal elimination method in order to have more accurate fault determination and location detection than conventional (SSTDR) despite increased signal attenuation due to the long distance to cable fault location. The proposed method has a two-step process: the first step is to detect a peak location of the reference signal using time-frequency correlation analysis, and the second step is to detect a peak location of the correlation coefficient of the reflected signal by removing the reference signal. The proposed method was validated through comparison with existing SSTDR methods in open-and short-circuit fault detection experiments of low voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.

Comparison of SUV for PET/MRI and PET/CT (인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화)

  • Kim, Jae Il;Jeon, Jae Hwan;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

A Study on the ECM(Echo Cancelling Method) Design for Digital Transmission over the Two-Hire Loops (2선 선로에 Digital 전송을 위한 ECM(Echo Cancelling Method) 설계에 관한 연구)

  • Lim, C.S.;Chung, H.C.;Kim, Y.K.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.947-949
    • /
    • 1987
  • This paper describes the design of echo cancslling method(ECM) for transmission with full-duplex which ie transmitted on "2B+D"(144kbps)data through two-wire loop plants. The design objective is 40dB attenuation with a signal-to-noise ratio of $10{\sim}20dB$. Since the transhybrid loos can be as low as $6{\sim}10dB$, the required attenuation of the echo signal is on the order of $50{\sim}55dB$. The used algorithms based on the sign algorithm, and have been improved by using adoptive reference voltage level algorithm.

  • PDF