• 제목/요약/키워드: Low Cycle Fatigue Data

검색결과 56건 처리시간 0.029초

變動荷重下의 疲勞壽命 豫測 第2報 (Fatigue Life Predictions for Variable Load Histories - Part II : Computer Software for Predictions of Fatigue Crack Initiation Life -)

  • 이시중;송지호;하재선
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1350-1357
    • /
    • 1988
  • A computer software was developed for predictions of fatigue crack initiation life of notched members under variable loadings. The software was constructed based on a new fatigue life prediction method utilizing modified .epsilon.-N curves, which can account for the stress interaction effect. The effect of mean plastic strain on low-cycle fatigue life was also incorporated in the software. The software can be utilized for the first step approximation when fundamental data of material fatigue properties are not available.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구 (A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks)

  • 주원식;조석수
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석 (Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model)

  • 김유일;김경수
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가 (Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids)

  • 이두영;정진성;김영대;방지예
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

저압터빈용 로터강의 이축 피로수명예측법에 관한 연구 (Study of Axial and Torsional Fatigue Life Prediction Method for Low Pressure Turbine Rotor Steels)

  • 현중섭;송기욱;이영신
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.149-155
    • /
    • 2005
  • The rotating components such as turbine rotors in service are generally subjected to multiaxial cyclic loading conditions. The prediction of fatigue lift for turbine rotor components under complex multiaxial loading conditions is very important to prevent the fatigue failures in service. In this paper, axial and torsional low cycle fatigue tests were preformed for 3.5NiCrMo steels serviced low pressure turbine rotor of nuclear power plant. Several methods to predict biaxial fatigue life such as Tresca, von Mises and Brown & Miller's critical plane approach were evaluated to correlate the experimental results for serviced NiCrMoV steel. The fracture mode and fatigue characteristics of NiCrMoV steel were discussed based on the results of fatigue tests performed under the axial and torsional test conditions. In particular, the Brown and Miller's critical plane approach was found to best correlate the experimental data with predictions being within a factor of 2.

인장 실험 데이터를 이용한 피로한도 결정에 관한 연구 (Determination of the Fatigue Limit by Using a Tensile Testing Data)

  • 김태훈;김학윤;오흥국;진억용
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.155-159
    • /
    • 2000
  • 고주기 피로조건에서 응력진폭은 항복점이하의 응력이므로 변형은 일반적으로 탄성적이다. 만약 변형이 완전히 탄성적이라면 피로는 생겨나지 않을 것이다. 그러나 이는 항복점의 개념과 항복점 아래에서의 순수탄성변형의 가정을 과도하게 단순화한 것이다. 인장실험 시 시편 전체가 파괴 절차를 따르는 반면, 고주기 피로실험에서는 국부적 영구 슬립띠가 파괴절차를 따른다. 그러나 두 경우에서 파괴 전변형영역의 단위체적 당 변형의 축적은 두 재료가 동일하기 때문에 국부적으로 동일하다. 미소 소성변형이나 Luders band, 탄성영역에서의 인장실험곡선의 기울기변화는 재료속에 포함된 경도가 높은 침입형 또는 침탄형 원자의 구름에 기인한다. 이들이 구름운동(Rolling movement)을 일으켜 다음 격자로 이동하면 소성변형이 발생되는 반면, 완전히 구르지 못하고 제자리로 되돌아오는 운동을 반복하는 경우가 바로 피로한계인다.

  • PDF

저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가 (Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading)

  • ;김선진;김우곤;김민환
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

연소기 재생냉각 채널용 구리합금의 피로수명예측 (Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber)

  • 이금오;유철성;허성찬;최환석
    • 한국추진공학회지
    • /
    • 제21권6호
    • /
    • pp.73-82
    • /
    • 2017
  • 재사용 발사체용으로 개발되는 엔진은 반복 사용 조건에 따른 저사이클 열피로 문제를 고려해야 한다. 본 연구는 연소기 재생냉각채널에 사용되는 구리합금의 피로수명을 인장시험 데이터로부터 예측하기 위하여 기존의 연구자들이 제안하였던 수명예측식을 다양한 종류의 구리합금의 경우에 적용하여 비교하였다. 제안된 수명예측식 중 공통경사법은 구리합금의 수명 예측에서 가장 좋은 결과를 보여 주었으며, 수정 Mitchell 방법은 OFHC 구리의 수명 예측에서 가장 좋은 결과를 보여주었다.