• Title/Summary/Keyword: Low CTE

Search Result 72, Processing Time 0.021 seconds

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Characterization of Low-temperature SU-8 Negative Photoresist Processing for MEMS Applications

  • May Gary S.;Han, Seung-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.135-139
    • /
    • 2005
  • In this paper, negative SU-8 photoresist processed at low temperature is characterized in terms of delamination. Based on a $3^3$ factorial designed experiment, 27 samples are fabricated, and the degree of delamination is measured for each. In addition, nine samples are fabricated for the purpose of verification. Employing the. neural network modeling technique, a process model is established, and response surfaces are generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. From the response surfaces generated, two significant parameters associated with delamination are identified, and their effects on delamination are analyzed. Higher PEB temperature at a fixed PEB time results in a greater degree of delamination. In addition, a higher dose of exposure energy lowers the temperature at which the delamination begins and also results in a larger degree of delamination. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

Synthesis of Cardo Based Poly(arylene ether)s for Flexible Plastic Substrates and Their Properties

  • Kim, Moon-Ki;Kwon, Kyung-Jae;Han, Yang-Kyoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3311-3316
    • /
    • 2011
  • New poly(arylene ether)s (PAEs) with both transparency and heat-resistance were prepared by a polycondensation of FBPODS, an ordered-sequence aromatic dihalide, and cardo typed aromatic diols containing fluorene and/or adamantane moiety and also non-cardo typed 1,5-naphthalene diol. The resulting polymers had their glass transition temperatures ranged from 202 to $247^{\circ}C$. Based on TGA data, they exhibited excellent thermal stabilities, showing 5% weight loss at $434-487^{\circ}C$. They had low thermal expansion coefficients of 58-59 ppm at temperature range of $50-200^{\circ}C$ as well as good mechanical properties with moduli of 1757-2143 MPa. The optical transmittance for the PAE films was over 70% at 550 nm, except for the PAE that contains naphthalene moiety (30% at 550 nm). They also showed water uptake of about 0.68% regardless of their chemical compositions. Therefore, the newly developed PAEs show strong potential as plastic substrates for flexible devices for display, solar cell and e-paper.

Synthesis and Characterization of Colorless Polyimide Nanocomposite Films Containing Pendant Trifluoromethyl Groups

  • Jin, Hyo-Seong;Chang, Jin-Hae;Kim, Jeong-Cheol
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.503-509
    • /
    • 2008
  • A series of colorless polyimide (PI) nanocomposite films were synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFDB) with various organoclay contents by solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. The variation with the organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids was examined at organoclay loadings ranging from 0 to 1.0 wt%. The hybrid films showed high optical transparency and almost no color, with cut-off wavelengths ranging from 352 and 356 nm and very low $b^*$ values of 1.19-1.77. The hybrid PI films showed good thermal properties with a glass transition temperature of $280-287^{\circ}C$. Most films did not show any significant thermal decomposition below $490^{\circ}C$. The addition of only a small amount of organoclay was sufficient to improve the tensile properties of the PI films with maximum enhancement being observed at 0.25 wt% organoclay. Moreover, these PI hybrids also had low coefficients of thermal expansion (CTE).

Comparison of the Efficacy of Diluted Polyethylene Glycol and Low-Density (0.1% w/v) Barium Sulfate Suspension for CT Enterography (전산화단층촬영 소장조영술을 위한 희석된 폴리에틸렌 글리콜과 저밀도(0.1% w/v) 바륨 현탁액의 유용성 비교)

  • Yeon Jung Kim;Seung Ho Kim;Tae Wook Baek;Hyungin Park
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.4
    • /
    • pp.911-922
    • /
    • 2023
  • Purpose To compare small bowel distension and side effects between a diluted polyethylene glycol (PEG) solution and a low-density (0.1% w/v) barium sulfate suspension (LDBSS) for CT enterography (CTE) preparation. Materials and Methods Total 173 consecutive patients who underwent CTE were enrolled in this study. The LDBSS (1 L) was used in 50 patients, and the diluted iso-osmotic PEG solution (1 L) was used in 123 patients. Two blinded radiologists independently scored jejunal and ileal distensions on a 5-point scale. To compare side effects between the two groups, the patients reported whether they had immediate complications after the administration of the oral contrast media. Results For ileal and jejunal distension, the diluted PEG solution showed no difference from the LDBSS for either reader (ileum: reader 1, median, 4; 4, interquartile range, 3-4; 3-4, p = 0.997; reader 2, median, 4; 4, interquartile range, 3.3-4.0; 3-4, p = 0.064; jejunum: reader 1, median, 2; 2, interquartile range, 2-3; 2-3, p = 0.560; reader 2, median, 3; 2, interquartile range, 2-3; 2-3, p = 0.192). None of the patients complained of immediate complications following administration of either of the oral contrast media. Conclusion The diluted PEG solution showed comparable bowel distension compared to LDBSS and no immediate side effects; thus, it can be a useful alternative.

The study on the properties of binary mixture(crystalline silica/AIN) filled EMC(Epoxy Molding Compounds) (결정성 실리카/질화 알루미늄 혼합충진에 따른 EMC의 물성 연구)

  • 김원호;홍용우;배종우;황영훈;김부웅
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.41-48
    • /
    • 1999
  • Silica is the most popular materials as a filler of EMC for microelectronic packaging. However, because of its low thermal conductivity, the use of silica is restricted to parts requiring high thermal dissipation. The superior fluidity of EMC can be achieved with a combination of filler size distribution. In this study, physical properties of EMC filled with the crystalline silica(13$\mu\textrm{m}$) which have high fluidity and low cost and the AlN(2 $\mu\textrm{m}$) which have high thermal conductivity and low coefficient of thermal expansion were evaluated by changing the AlN/silica ratios. As a result of the evaluation of physical properties of EMC, the optimum mixing ratio of AlN/crystalline silica was 0.3/0.7. In this condition, binary mixture(AlN/crystalline silica) filled EMC showed superior properties, i.e., in the thermal conductivity, CTE, dielectric constant, flexural strength, and thermal shock resistance without reduction of fluidity.

  • PDF

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray (초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구)

  • Lee, J.C.;Ahn, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Effect of Die Bonding Epoxy on the Warpage and Optical Performance of Mobile Phone Camera Packages (모바일 폰 카메라 패키지의 다이 본딩 에폭시가 Warpage와 광학성능에 미치는 영향 분석)

  • Son, Sukwoo;Kihm, Hagyong;Yang, Ho Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • The warpage on mobile phone camera packages occurs due to the CTE(Coefficient of Thermal Expansion) mismatch between a thin silicon die and a substrate. The warpage in the optical instruments such as camera module has an effect on the field curvature, which is one of the factors degrading the optical performance and the product yield. In this paper, we studied the effect of die bonding epoxy on the package and optical performance of mobile phone camera packages. We calculated the warpages of camera module packages by using a finite element analysis, and their shapes were in good agreement showing parabolic curvature. We also measured the warpages and through-focus MTF of camera module specimens with experiments. The warpage was improved on an epoxy with low elastic modulus at both finite element analysis and experiment results, and the MTF performance increased accordingly. The results show that die bonding epoxy affects the warpage generated on the image sensor during the packaging process, and this warpage eventually affects the optical performance associated with the field curvature.

The Effect of Heat Treatment on the Thermal Expansion Behavior of Electroformed Nano-crystalline Fe-42 wt%Ni Alloy

  • Lee, Minsu;Han, Yunho;Yim, Tai Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.293-296
    • /
    • 2014
  • Fe-Ni has been of great interest because it is known as one of low thermal expansion alloys as various application areas. This alloy was fabricated by electroforming process, and effect of heat treatment on thermal expansion and hardness was investigated. Nano-crystalline structure of 13.3 - 63.5 nm in size was observed in the as-deposited alloy. To investigate the effect of heat treatment on grain growth and mechanical/thermal properties, we conducted hardness and coefficient of thermal expansion (CTE). From this, we confirmed these properties were varied by heat treatment. In this nano-crystalline alloy, we could observe abnormal behavior in thermal expansion between $350-400^{\circ}C$. Additionally, an abrupt change in hardness has also been observed. However, once the grains grow up to micro-sized the mechanical and thermal properties mentioned above were stabilized similar to those of bulk alloys due to heat treatment.