Synthesis and Characterization of Colorless Polyimide Nanocomposite Films Containing Pendant Trifluoromethyl Groups

  • Jin, Hyo-Seong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Gwangju R&D Center, Korea Institute of Industrial Technology)
  • Published : 2008.08.31

Abstract

A series of colorless polyimide (PI) nanocomposite films were synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFDB) with various organoclay contents by solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. The variation with the organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids was examined at organoclay loadings ranging from 0 to 1.0 wt%. The hybrid films showed high optical transparency and almost no color, with cut-off wavelengths ranging from 352 and 356 nm and very low $b^*$ values of 1.19-1.77. The hybrid PI films showed good thermal properties with a glass transition temperature of $280-287^{\circ}C$. Most films did not show any significant thermal decomposition below $490^{\circ}C$. The addition of only a small amount of organoclay was sufficient to improve the tensile properties of the PI films with maximum enhancement being observed at 0.25 wt% organoclay. Moreover, these PI hybrids also had low coefficients of thermal expansion (CTE).

Keywords

References

  1. W. Qu, T. Z. Ko, R. H. Vora, and T. S. Chung, Polymer, 42, 6393 (2001) https://doi.org/10.1016/S0032-3861(01)00111-2
  2. C. P. Yang and H. W. Yang, US Patent 6,093,790 (2000)
  3. A. K. S. Clair and W. S. Slemp, SAMPE J., 21, 28 (1985)
  4. B. Y. Myung, J. S. Kim, and T. H. Yoon, J. Polym. Sci. Part A: Polym. Chem., 41, 3361 (2003) https://doi.org/10.1002/pola.10924
  5. C. P. Yang, R. S. Chen, and K. H. Chen, Part A: J. Polym. Sci. Polym. Chem., 41, 922 (2003) https://doi.org/10.1002/pola.10629
  6. C.-P. Yang and Y. Y. Sue, Polymer, 46, 5778 (2005) https://doi.org/10.1016/j.polymer.2005.04.077
  7. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. Kim, I. Kim, and J. C. Won, Polymer(Korea), 29, 204 (2005)
  8. C.-P. Yang and Y.-C. Chen, J. Appl. Polym. Sci., 96, 2399 (2005) https://doi.org/10.1002/app.21702
  9. J. H. Kim, W. J. Koros, and D. R. Paul, Polymer, 47, 3094 (2006) https://doi.org/10.1016/j.polymer.2006.02.083
  10. A. S. Mathews, I. Kim, and C.-S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  11. K. Higashi and Y. Noda, Eur Pat. 240249 (1986)
  12. T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, Electron. Lett., 29, 2107 (1993) https://doi.org/10.1049/el:19931409
  13. G. Lagaly, Appl. Clay Sci., 15, 1 (1999) https://doi.org/10.1016/S0169-1317(99)00009-5
  14. E. P. Giannelis, Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  15. K. H. Kim, K. H. Kim, J. Huh, and W. H. Jo, Macromol. Res., 15, 178 (2007) https://doi.org/10.1007/BF03218771
  16. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  17. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001) https://doi.org/10.1021/ma010780b
  18. Z.-M. Liang and J. Yin, J. Appl. Polym. Sci., 90, 1857 (2003) https://doi.org/10.1002/app.12847
  19. D. G, Greenland, J. Colloid Sci., 115, 40 (1970)
  20. Z. Shen, G. P. Simon, and Y.-B. Cheng, Polymer, 43, 4251 (2002) https://doi.org/10.1016/S0032-3861(02)00230-6
  21. T. J. Pinnavaia, Science, 220, 365 (1983) https://doi.org/10.1126/science.220.4595.365
  22. A. Okada and A. Usuki, Mater. Sci. Eng., C3, 109 (1995)
  23. Y. Yang, Z. Zhu, J. Yin, X. Wang, and Z. Qi, Polymer, 40, 4407 (1999) https://doi.org/10.1016/S0032-3861(98)00675-2
  24. J.-H. Chang, D. K. Park, and K. J. Ihn, J. Appl. Polym. Sci., 84, 2294 (2002) https://doi.org/10.1002/app.10519
  25. J.-H. Chang and K. M. Park, Polym. Eng. Sci., 41, 2226 (2001) https://doi.org/10.1002/pen.10918
  26. J.-H. Chang, K. M. Park, D. Cho, H. S. Yang, and K. J. Ihn, Polym. Eng. Sci., 41, 1514 (2001) https://doi.org/10.1002/pen.10850
  27. J.-H. Chang and K. M. Park, Eur. Polym. J., 36, 2185 (2000) https://doi.org/10.1016/S0014-3057(99)00280-3
  28. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003) https://doi.org/10.1002/app.11884
  29. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 35, 2289 (1997) https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9
  30. H. S. Jin and J.-H, Chang, J. Appl. Polym. Sci., 107, 109 (2008) https://doi.org/10.1002/app.26173
  31. J.-H. Chang, B.-S. Seo, and D.-H. Hwang, Polymer, 43, 2969 (2002) https://doi.org/10.1016/S0032-3861(02)00125-8
  32. F. Li, J. Ge, P. Honigfort, S. Fang, J. C. Chen, F. Harris, and S. Cheng, Polymer, 40, 4987 (1999) https://doi.org/10.1016/S0032-3861(98)00721-6
  33. T. Agag and T. Takeichi, Polymer, 41, 7083 (2000) https://doi.org/10.1016/S0032-3861(00)00064-1
  34. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002) https://doi.org/10.1016/S0032-3861(02)00400-7
  35. X. S. Petrovic, L. Javni, A. Waddong, and G.. J. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  36. H.-L. Tyan, Y.-C. Liu, and K.-H. Wei, Chem. Mater., 11, 1942 (1999) https://doi.org/10.1021/cm990187x
  37. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001) https://doi.org/10.1016/S0032-3861(00)00824-7
  38. M. Okamoto, S. Morita, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 42, 1201 (2001) https://doi.org/10.1016/S0032-3861(00)00419-5
  39. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem. Ed., 31, 2493 (1993) https://doi.org/10.1002/pola.1993.080311009