• Title/Summary/Keyword: Loss Estimation

Search Result 1,092, Processing Time 0.035 seconds

Bayesian Estimation of Three-parameter Bathtub Shaped Lifetime Distribution Based on Progressive Type-II Censoring with Binomial Removal

  • Chung, Younshik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2747-2757
    • /
    • 2018
  • We consider the MLE (maximum likelihood estimate) and Bayesian estimates of three-parameter bathtub-shaped lifetime distribution based on the progressive type II censoring with binomial removal. Jung, Chung (2018) proposed the three-parameter bathtub-shaped distribution which is the extension of the two-parameter bathtub-shaped distribution given by Zhang (2004). Jung, Chung (2018) investigated its properties and estimations. The maximum likelihood estimates are computed using Newton-Raphson algorithm. Also, Bayesian estimates are obtained under the balanced loss function using MCMC (Markov chain Monte Carlo) method. In particular, BSEL (balanced squared error loss) function is considered as a special form of balanced loss function given by Zellner (1994). For comparing theirs MLEs with the corresponding Bayes estimates, some simulations are performed. It shows that Bayes estimates is better than MLEs in terms of risks. Finally, concluding remarks are mentioned.

ESTIMATION OF SCALE PARAMETER FROM RAYLEIGH DISTRIBUTION UNDER ENTROPY LOSS

  • Chung, Youn-Shik
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.1
    • /
    • pp.33-40
    • /
    • 1995
  • Entropy loss is derived by the scale parameter of Rayleigh distribution. Under this entropy loss we obtain the best invariant estimators and the Bayes estimators of the scale parameter. Also we compare MLE with the proposed estimators.

Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation

  • Rim, Beanbonyka;Kim, Junseob;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2020
  • Accurate estimation of human pose relies on backbone method in which its role is to extract feature map. Up to dated, the method of backbone feature extraction is conducted by the plain convolutional neural networks named by CNN and the residual neural networks named by Resnet, both of which have various architectures and performances. The CNN family network such as VGG which is well-known as a multiple stacked hidden layers architecture of deep learning methods, is base and simple while Resnet which is a bottleneck layers architecture yields fewer parameters and outperform. They have achieved inspired results as a backbone network in human pose estimation. However, they were used then followed by different pose estimation networks named by pose parsing module. Therefore, in this paper, we present a comparison between the plain CNN family network (VGG) and bottleneck network (Resnet) as a backbone method in the same pose parsing module. We investigate their performances such as number of parameters, loss score, precision and recall. We experiment them in the bottom-up method of human pose estimation system by adapted the pose parsing module of openpose. Our experimental results show that the backbone method using VGG network outperforms the Resent network with fewer parameter, lower loss score and higher accuracy of precision and recall.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

Consideration of a structural-change point in the chain-ladder method

  • Kwon, Hyuk Sung;Vu, Uy Quoc
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.211-226
    • /
    • 2017
  • The chain-ladder method, for which run-off data is employed is popularly used in the rate-adjustment and loss-reserving practices of non-life-insurance and health-insurance companies. The method is applicable when the underlying assumption of a consistent development pattern is in regards to a cumulative loss payment after the occurrence of an insurance event. In this study, a modified chain-ladder algorithm is proposed for when the assumption is considered to be only partially appropriate for the given run-off data. The concept of a structural-change point in the run-off data and its reflection in the estimation of unpaid loss amounts are discussed with numerical illustrations. Experience data from private health insurance coverage in Korea were analyzed based on the suggested method. The performance in estimation of loss reserve was also compared with traditional approaches. We present evidence in this paper that shows that a reflection of a structural-change point in the chain-ladder method can improve the risk management of the relevant insurance products. The suggested method is expected to be utilized easily in actuarial practice as the algorithm is straightforward.

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.

Loss Estimation in Southeast Korea from a Scenario Earthquake using the Deterministic Method in HAZUS

  • Kim, Kwang-Hee;Kang, Su-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2009.02b
    • /
    • pp.43-50
    • /
    • 2009
  • Strong ground motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al. (1997) for the Site Class B has been selected for this study. Reliability of the assessment will be improved by using an appropriate attenuation relation. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Our preliminary estimates show 15.6% damage of houses, shelter needs for about three thousands residents, and 75 life losses in the study area for the scenario events occurring at 2 A.M. Approximately 96% of hospitals will be in normal operation in 24 hours from the proposed event. Losses related to houses will be more than 114 million US dollars. Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  • PDF

Channel Estimation and LDPC Code Puncturing Schemes Based on Incremental Pilots for OFDM

  • Jung, Sung-Yoon;Kim, Sung-Hwan
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.603-606
    • /
    • 2010
  • In this letter, we propose a channel estimation algorithm based on incremental pilots. These are pilots additionally inserted after puncturing the modulated orthogonal frequency division multiplexing (OFDM) symbols to enhance channel estimation performance without lowering bandwidth efficiency. A low-density parity-check code puncturing scheme is also proposed to prevent the performance degradation due to the codeword bit loss caused by punctured OFDM symbols.

Estimation and Analysis of Slump Loss in Ready Mixed Concrete (레드믹스트 콘크리트의 슬럼프손실량(損失量)의 추정(推定) 및 슬펌프손실(損失)에 영향을 미치는 요인분석(要因分析))

  • Moon, Han Young;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-34
    • /
    • 1986
  • Multiple regression equation was derived for estimation of slump loss in ready mixed concrete and usefulness of the equation was verfied by field test. Factors affecting slump loss were examined and analyzed for transport distance and transport time of ready mixed concrete. The analysis showed that wait and discharge time of ready mixed concrete in job site caused difficulty in the slump control. To determine the influence of the other factors such as mix proportion, temperature of concrete, and dosage of admixture, experimental tests were performed. Generally, there was no significant difference in slump loss according to cement content and initial slump level. For one retarder, more slump loss was found, but difference according to dosage of admixture was not recognized.

  • PDF

Application of KORSLE to Estimate Soil Erosion at Field Scale (한국형 토양유실공식에 의한 토양유실량 현장예측)

  • Song, Jae Min;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • In 2013, the Ministry of Environment in South Korea promulgated a new regulatory bulletin that contained revised enforcement ordinance on soil management protocols. The bulletin recommends the use of Universal Soil Loss Equation (USLE) for the soil erosion estimation, but USLE has limited applicability in prediction of soil erosion because it does not allow direct estimation of actual mass of soil erosion. Therefore, there is a great need of revising the protocol to allow direct comparison between the measured and estimated values of soil erosion. The Korean Soil Loss Equation (KORSLE) was developed recently and used to estimate soil loss in two fields as an alternative to existing USLE model. KORSLE was applied to estimate monthly rainfall erosivity indices as well as temporal variation in potential soil loss. The estimated potential soil loss by KORSLE was adjusted with correction factor for direct comparison with measured soil erosion. The result was reasonable since Nash-Stucliff efficiency were 0.8020 in calibration and 0.5089 in validation. The results suggest that KORSLE is an appropriate model as an alternative to USLE to predict soil erosion at field scale.