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a b s t r a c t

This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear
autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches,
requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to
directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case
studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of
hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing
parametric studies to determine the network architecture with minimum error. The developed NARX
neural network is trained by error back propagation algorithm with different break sizes, covering 5%
e100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5
thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural
network for break size estimation in NPPs. It is able to find a general solution for break size estimation
problem in real-time, using a limited number of training data sets. This study has been performed in the
framework of a research project, aiming to develop an appropriate accident management support tool for
Bushehr NPP.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Early failure detection and diagnosis play a fundamental role in
safe and reliable operation of a nuclear power plant (NPP) [1e3].
NPP operators have to rapidly take appropriate actions to prevent
an incident from developing to a severe accident or to mitigate
accident consequences, which require complex judgments and
trade-offs in stressful situations like Fukushima accident [4]. Hun-
dreds of alarms within the first minute of emergency situations
such as loss of coolant accidents (LOCA) in NPPs, may cause oper-
ator confusion [5]. Break size estimation is required for determining
corrective actions to recover core heat removal after LOCAs, as well
as prediction of leak flow rate [6], water level of reactor pressure
vessel (RPV) [7], and timing of major events in LOCAs [8].

Break size estimation of LOCA in NPPs can be considered as an
inverse problem, which can be solved by either model-based or
model-free methods. EPRI [9] proposed an analytical model based
on chocked-flow equations to estimate break sizes. Inputs of this

model-based approach are thermodynamic parameters and
depressurization rate of the NPP, which are calculated by operators.
Model-free methods can be very helpful in reducing operator
cognitive workload and easing decision making process. Various
types of model-free methods such as artificial neural networks
(ANN) [1,10,11], support vector regression (SVR) [12], and group
method of data handling (GMDH) [13] have been applied for break
size estimation in NPPs.

ANN is the best soft-computing approach for dealing with the
problems with significantly overlapping patterns, dynamically
changing environments, high background noise, and absence of
accurate and fast models [14]. ANNs have been extensively imple-
mented for fault detection and diagnosis of NPPs and their com-
ponents [11]. Different types of ANNs can be trained to identify the
states of complex systems such as NPPs. Feed-forward multilayer
perceptron (MLP) with different training algorithms and architec-
tures were used for break size estimation in NPPs, e.g. feed-water
line break of a pressurized water reactor (PWR) [1], LOCA in
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different locations of a pressurized heavy water reactor (PHWR) [4],
and a PWR [11]. Feed-forward fuzzy neural networks (FNN) trained
using genetic algorithm, were also applied to break size estimation
in hot-leg, cold-leg, and steam-generator tubes of a PWR [10]. To
the authors’ knowledge, previous studies on break size estimation
used static methods, which require independent firing algorithms
and integrating of thermal-hydraulic (TH) parameters during the
transient. In this study, a NARX neural network, which is able to
directly deal with the time-dependent signals, has been applied for
dynamic estimation of break sizes in the real-time.

The objective of the current study is to develop a NARX neural
network, for break size estimation of LOCAs, which will be
implemented in the structure of an accident management sup-
port tool (AMST) developed for Bushehr NPP [15e18]. AMSTs are
used to ease decision making of the plant operators in selection
of accident management countermeasures. AMSTs mainly consist
of three parts, namely, Tracker, Predictor, and Decision support
[8]. The Tracker enables operators to have insights into NPP
states during accident management. A NARX neural network has
been developed to be used for break size estimation in the
Tracker. The break size estimation module of the Tracker is
subdivided into: (1) a fuzzy classifier to categorize the break-type
accidents in the primary system into three categories, i.e. LOCA in
cold leg, LOCA in hot leg, and steam generator tube rupture
(SGTR), and (2) three NARX neural networks to estimate break
sizes in each category. The results provided by the break size
estimation module are used whenever a break-type accident is
identified. A set of modular ANNs is conceived to accident
identification in the Tracker of the AMST. These modular ANNs
continuously monitor the plant states and identify the initiating
event of the accident, based on TH parameters of the NPP. The
Trackers equipped with a NARX neural network, will provide
more precise support in identification of break-type accidents
during accident management.

The rest of the paper is arranged as follows: Section 2 gives a
quick insight into NARX neural networks. The developed database
for training, testing and validation process of the network for break
size estimation in Bushehr NPP is briefly introduced in Section 3. In
Section 4, the architecture of the NARX neural network, developed
based on parametric studies, are presented. The results of NARX
application are reported and discussed in Section 5. Section 6 ends
the paper with some concluding remarks.

2. Description of NARX neural networks

By adding feedback connections to the architecture of feed-
forward networks, recurrent neural networks (RNN) are
formed, which are able to deal with temporal input signals. NARX
neural networks, as a subcategory of RNNs, have limited feed-
backs which come only from the output neurons rather the
hidden neurons [19]. NARX model is a discrete-time nonlinear
system as follows:

yðtÞ ¼ f ðyðt � 1Þ; :::; yðt �mÞ; uðtÞ; :::; uðt � pÞÞ (1)

where uðtÞ and yðtÞ are time-dependent input and output of the
network at time t, p and m are the input-memory and output-
memory order, and f is a nonlinear function [19]. NARX model is
called a NARX neural network, when the function f is approximated
by aMLP. Different trainingmethods can be used in training process
of the MLP of a NARX neural network. Training process is accom-
plished by adjusting the connecting weights of neurons to get the
appropriate estimations. Gradient-descent learning is more effec-
tive in NARX neural networks than in other RNN architectures
when applied to nonlinear system identification [20]. Also, NARX

neural network with gradient-decent learning, converges much
faster and can generalize better than RNN [21]. Flow chart of
training process of the developed NARX neural network is pre-
sented in Fig. 1. In the training with gradient-descent method,

Fig. 1. Flow chart of training process of the developed NARX neural network.
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weights of the network are successively adjusted by error back
propagation (EBP) algorithm to minimize a quadratic cost function,
which is defined as follows:

Eðn; tÞ ¼ 1
2
�
XK
k¼1

ðdkðtÞ � ykðn; tÞÞ2 (2)

where dkðtÞ and ykðn; tÞ are the actual and estimated values of kth
output at time t in nth iteration, respectively. In this study,
sigmoidal activation function is used for all neurons:

yðaiÞ ¼ tanh
�ai
2

�
(3)

where ai is the total inputs of the ith neuron. Weight updating rule
after any iteration, between jth neuron in layer l� 1 and ith neuron
in layer l is:

wijðnþ 1Þ ¼ wijðnÞ þ DwijðnÞ (4)

where DwijðnÞ is the required weight variation in nth iteration.
For batch learning of whole transient, updating of the weights is

accomplished for all T data points of the transient at the same time.
In addition, for training NARX neural network with different break
sizes without losing previous learnings, all training transients
should be involved inweight updating process in any iteration [21].
Therefore, the overall weight variation for G transients is calculated
from (5).

DwijðnÞ ¼

PG
g¼1

PT
t¼1

Dwijðn; tÞ

G� T
(5)

where Dwijðn; tÞ is the weight difference calculated for any data set
from (6) with learning rate of h .

Dwijðn; tÞ ¼ �h� vEðn; tÞ
vwijðnÞ

(6)

To have an overall estimation of errors for each transient, total
transient squared error (TTSE) is defined from (7). Average TTSE is
calculated by averaging for G transients.

TTSE ¼ 1
2

XT
t¼1

Eðn; tÞ ¼ 1
2
�
XT
t¼1

XK
k¼1

ðdkðtÞ � ykðn; tÞÞ2 (7)

3. Development of a TH database for break size estimation in
Bushehr NPP

Field measurement of TH parameters during LOCAs in NPPs
should ideally be used in training process of NARX neural networks.
Because of unavailability of plant specific data covering the whole
range of break sizes, the database for training and testing process
should be developed based on simulation of LOCAs with various
sizes by appropriate TH codes. RELAP5 is a detailed TH code for
accident analysis and its capability to accurately prediction of TH
response of NPPs is validated in the literature [22]. As a case study
to investigate the feasibility of using NARX neural network for
break size estimation, 13 scenarios of LOCAwith various break sizes
(5%e100% ofmain pipeline area) in the cold leg of Bushehr NPP plus
a null-transient scenario are modeled using RELAP5 code. Bushehr
NPP is a four loop Russian-designed light water reactor, i.e. VVER-
1000. RELAP5 nodalization of the developed TH model of Bushehr

NPP is shown in Fig. 2. All break scenarios for this study are
generated with availability of passive parts of emergency core
cooling system (ECCS), i.e. accumulators, and unavailability of
active parts of ECCS (low and high pressure injection systems). For
13 base scenarios, default Henry-Fauske critical flow model was
used with default values for the discharge coefficient (1.0) and the
thermal nonequilibrium constant (0.14). Time trend of RPV pres-
sure for all cases of the database is presented in Fig. 3. First 100 s of
all cases is dedicated to null-transient condition and then the break
in the cold leg occurs. Generally, larger break sizes lead to faster
depressurization of the primary system.

The developed database for training process of NARX neural
network consists of a null-transient scenario plus 13 LOCA sce-
narios with different sizes ranging from 5% to 100% of cross
sectional area of main coolant pipelines. For simulated scenarios,
time evolution of the pressure inside RPV and the actual break size
are used to generate the database.

Before starting the training process, all inputs of NARX neural
network are scaled between �0.5 and 0.5 with (8), according to
their minimum and maximum values. The scaling of the input data
makes learning process easier, because the original data contained
both small and large values [11].

xscaled ¼ x�minðxÞ
maxðxÞ �minðxÞ � 0:5 (8)

Fig. 2. Nodalization of the developed TH model for Bushehr NPP in RELAP5 code.

Fig. 3. Time trend of RPV pressure for all cases of the database.
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4. Development and training of the NARX neural network

In case of LOCAs in a PWR NPP, pressure of the primary system
starts to decrease as a time-dependent pattern. In this study, esti-
mation of break sizes is based on pressure variations in the RPV
during LOCAs. Time-dependent pressure signal at early phase of
LOCAs are selected for training of NARX neural network, to increase
the training speed and eliminate the effect of actuation of ECCS
active part. The generated database has been partitioned in
training, testing, and validation data sets. NARX neural network is
trained by EBP algorithm using the training data sets. The validation
data sets are used to overcome the over-fitting problem. Also,
testing data sets are employed to verify the capability of NARX
neural network to estimate break sizes, which are not used in the
training process. Approximately 70% of transients in the database
are selected for training, 15% for validation, and 15% are left for
testing of NARX neural network.

Number of hidden layers, neurons, feedbacks, inputs, and training
duration of transients are selected by performing parametric studies
to determine the network architecture with the minimum error.
Fig. 4 shows the variation of average TTSE for training LOCA scenarios
versus number of hidden layers of the MLP in the NARX model. MLP
with three hidden layers has the best learning performance to be

implemented in the NARX model. Average TTSE of training data sets
for different number of neurons in hidden layers of the MLP is
illustrated in Fig. 5. Minimum error for training scenarios is achieved
with a 10-20-10 structure of hidden layers in the MLP. Variation of
average TTSE for different number of feedbacks from out layer to
input layer of NARX neural network is presented in Fig. 6. It shows
that NARX network with two feedbacks of the estimated break size
has the minimum error for training data sets. In Fig. 7, variation of
average TTSE for different number of inputs from the pressure signal
is shown. Minimum error is achieved by patterns with 8 pressure
points. Fig. 8 shows average TTSE versus different durations of the
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Fig. 4. Variation of average TTSE for training LOCA scenarios versus number of hidden
layers of the MLP.
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Fig. 5. Variation of average TTSE for training LOCA scenarios versus number of neurons
in hidden layers of the MLP.
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Fig. 6. Variation of average TTSE for training LOCA scenarios versus number of feed-
backs from output layer.
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Fig. 7. Variation of average TTSE for training LOCA scenarios versus number of inputs
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training transients. The investigation results indicate that 8 s is the
optimum training duration of transient condition to estimate the
break sizes using time-dependent depressurization patterns (first
10 s of LOCA scenarios in the developed database is related to steady-
state condition).

Based on the result of the parametric studies, a NARX neural
network with five layers is developed for break size estimation in
Bushehr NPP. Input layer consists of eight pressure nodes, two
feedbacks from the output layer, and a bias (�1). First node in the
input layer receives instantaneous pressure signal from the RPV
and next seven nodes receive this pressure signal at previous time
steps. Also, the feedbacks from the output layer feed the estimated

Fig. 9. Detailed structure of the developed NARX neural network for break size
estimation.

Fig. 10. Estimated and actual break sizes for the training data sets.

Table 1
Estimated break sizes and relative errors.

Case No. Data type Actual break size (%) Estimated break size (%) Errora (%) Relative errorb (%)

1 Training 0 0.02 0.02 e

2 Testing 5 4.30 0.70 14.00
3 Training 10 10.49 0.49 4.90
4 Training 20 21.10 1.10 5.50
5 Validation 25 24.89 0.11 0.44
6 Training 30 28.41 1.59 5.30
7 Training 40 39.25 0.75 1.88
8 Training 50 48.79 1.21 2.42
9 Training 60 58.84 1.16 1.93
10 Validation 65 61.03 3.97 6.11
11 Training 70 73.24 3.24 4.63
12 Training 80 84.58 4.58 5.73
13 Testing 90 91.68 1.68 1.87
14 Training 100 94.81 5.19 5.19

Average error or relative error of
all cases

e e 1.84 4.61

a Error is calculated by |(estimated value)-(actual value)|.
b Relative error is calculated by |((estimated value)-(actual value))/(actual value)|�100.

Fig. 11. Estimated and actual break sizes for the validation and testing data sets.
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break size into the input layer with delay. Hidden layers have 10-
20-10 structure, and output layer has a single neuron which rep-
resents the estimated break size. Detailed structure of the devel-
oped NARX neural network is presented in Fig. 9.

5. Results and discussion

A standard EBP algorithm with batch learning mode is used to
minimize error function of NARX neural network, composed of
neurons with sigmoidal activation functions. Training process stops
when the NARX neural network has the minimum estimation error
for validation data sets, to eliminate over-fitting problem. In Fig. 10,
real-time estimated break sizes by NARX neural network for the
training data sets are illustrated. Also, estimated break sizes for the
testing and validation data sets, which are not used in the training
process of NARX neural network, are presented in Fig. 11. The re-
sults indicate that NARX neural network is able to estimate the size
of LOCAs from the beginning of the transient, even for untrained
scenarios. For quantitative comparison of the actual and estimated
break sizes, average of estimated break sizes for a transient is
defined as follows:

Daverage ¼ 1
T

XT
t¼1

dðtÞ (9)

In Table 1, average value of the estimated break sizes, errors, and
relative errors are presented for all cases. Because of rapid and large
depressurization in case of large breaks, smaller breaks have
smaller errors. The results of NARX neural network for estimation
of the untrained cases are in good agreement with the actual break
sizes. NARX neural network is able to accurately find a general
solution for break size estimation problem in real-time, using a
limited number of training cases. Average of estimated break sizes
versus their actual values are illustrated in Fig. 12 for all cases.

For evaluation of the sensitivity of NARX estimations to un-
certainties in break discharge coefficient of Henry-Fauske critical
flow model, same break areas with default discharge coefficient
(1.0) are modeled by RELAP5 code with four different discharge
coefficients (0.9, 0.95, 1.05, and 1.1). Time-dependent pressure
signal is calculated for all break sizes with different discharge

Fig. 12. Actual and average estimated break sizes for the all cases of the database.

Fig. 13. Time trend of RPV pressure for cases with 5%, 50%, and 100% break areas and
different discharge coefficients.

Table 2
Estimated break sizes and relative errors for different discharge coefficients.

Case
No.

Actual
break
size (%)

Discharge coefficients

0.9 0.95 1.05 1.1

Estimated
break
size (%)

Errora

(%)
Relative errorb

(%)
Estimated
break size
(%)

Errora

(%)
Relative errorb

(%)
Estimated
break size
(%)

Errora

(%)
Relative errorb

(%)
Estimated
break size
(%)

Errora

(%)
Relative errorb

(%)

1 0 0.02 0.02 e 0.02 0.02 e 0.02 0.02 e 0.02 0.02 e

2 5 3.63 1.37 27.40 4.12 0.88 17.60 4.37 0.63 12.60 4.42 0.58 11.60
3 10 10.17 0.17 1.70 10.38 0.38 3.76 10.68 0.68 6.81 10.75 0.75 7.46
4 20 20.97 0.97 4.87 21.08 1.08 5.39 21.21 1.21 6.06 21.22 1.22 6.08
5 25 24.59 0.41 1.65 24.53 0.47 1.87 24.91 0.09 0.38 24.99 0.01 0.04
6 30 28.25 1.75 5.84 28.32 1.68 5.59 28.49 1.51 5.03 28.49 1.51 5.03
7 40 38.29 1.71 4.27 39.04 0.96 2.41 39.95 0.05 0.13 40.28 0.28 0.70
8 50 46.37 3.63 7.27 47.92 2.08 4.16 49.99 0.01 0.01 50.00 0.00 0.01
9 60 52.58 7.42 12.37 55.40 4.60 7.66 63.25 3.25 5.41 67.33 7.33 12.21
10 65 56.68 8.32 12.80 61.28 3.72 5.72 71.01 6.01 9.24 77.99 12.99 19.98
11 70 65.28 4.72 6.75 69.76 0.24 0.34 86.83 16.83 24.04 91.82 21.82 31.17
12 80 74.38 5.62 7.03 82.82 2.82 3.53 89.65 9.65 12.06 94.91 14.91 18.64
13 90 82.44 7.56 8.40 89.93 0.07 0.08 95.74 5.74 6.37 99.40 9.40 10.45
14 100 91.73 8.27 8.27 93.16 6.84 6.84 105.59 5.59 5.59 113.54 13.54 13.54

Average error of
all cases

e 3.71 8.36 e 1.85 5.00 e 3.66 7.21 e 6.02 10.53

a Error is calculated by |(estimated value)-(actual value)|.
b Relative error is calculated by |((estimated value)-(actual value))/(actual value)|�100.
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coefficients, and it is illustrated for cases with 5%, 50%, and 100%
break areas in Fig. 13. Based on the studies on duration of
training transients, first 8 s of 56 transients (14 scenarios with 4
different break discharge coefficients) are selected, and the
pressure signals are used as inputs of the developed NARX neural
network. The results in Table 2 show that, error and relative error
are increased by increasing deviations from default break
discharge coefficient (1.0) of the training cases in Table 1. This
sensitivity study highlights the importance of uncertainties in
the developed databases by TH modeling. To the authors’
knowledge, no study is performed to determine uncertainty of
the predicted pressure in LOCAs or uncertainty of the break size
estimation methods. However, uncertainty of predicted peak clad
temperature (PCT) in LOCAs are extensively analyzed in the
literature [23e26]. Therefore, a complete uncertainty study,
including identification and ranking of important variables, is
necessary to determine the effect of different TH variables on
pressure variation in LOCAs, and consequently on estimated
break sizes by NARX neural network.

6. Conclusion

This study deals with feasibility of implementation of NARX
neural networks for break size estimation of LOCAs in NPPs. Pre-
vious studies used static approaches, e.g. feed-forward neural
networks, which employ time-integrated value of TH parameters
and rely on independent firing algorithms such as reactor scram
signal. NARX neural network is able to directly deal with the time-
dependent signals for dynamic estimation of break sizes in real-
time.

In this study, NARX neural network, trained by EBP algorithm, is
employed to estimate break sizes of LOCAs in Bushehr NPP. The
database used for training and testing process of NARX neural
network is developed using simulation of Bushehr NPP by RELAP5
code. The results show that NARX neural network is able to accu-
rately find a general solution for break size estimation problem
using a limited number of training cases.

The developed NARX neural network will be implemented in
break size estimation module of the Tracker in the AMST designed
for Bushehr NPP to assist operators in planning appropriate acci-
dent management countermeasures during LOCAs. Break size
estimation is necessary for timely planning operator actions to
recover core heat removal by adequate water injection to replace
leak flow rate. In future studies, the break sizes which are estimated
by NARX neural network together with location of the breaks
which will be categorized by fuzzy classifiers, are used for precise
determination of the initiating event by Tracker of the AMST. Then,
Predictor of the AMST will predict progress path of the accident
using TH modeling by MELCOR code. Finally, Decision-support of
the AMST will provide available operator actions in different time
windows based on TH predictions.
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