• 제목/요약/키워드: Looping

검색결과 132건 처리시간 0.027초

양방향 경로 설정 및 루프 방지를 통한 개선된 AntHocNet (Improved AntHocNet with Bidirectional Path Setup and Loop Avoidance)

  • 라프만 샴스 우르;남재충;아즈말 칸;조유제
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.64-76
    • /
    • 2017
  • MANET (Mobile Ad hoc Network)에서 라우팅은 네트워크 토폴로지의 동적인 변화에 큰 영향을 받는다. AntHocNet은 집단 개미가 최적 경로를 통해 먹이를 찾아가는 원리를 모방한 집단생태 특성 기반 MANET 라우팅 프로토콜이다. 하지만, AntHocNet은 다른 MANET 라우팅 프로토콜과 달리 단방향 경로만을 지원하여 양방향 통신이 요구되는 다양한 응용 환경에서 사용하기에 많은 제약이 따른다. 또한, AntHocNet은 다중 경로를 통한 확률적 라우팅으로 인해 루핑 문제 (looping problems)를 빈번히 발생시킨다. 본 논문에서는 AntHocNet에서 양방향 경로 수립을 위한 향상된 경로 수립 방안을 제안한다. 또한, 다양한 시나리오별 루핑 문제의 발생 원인을 분석하고 루프 방지를 위한 해결 방안을 제시한다. NS-2 시뮬레이션을 통해 기존 AntHocNet과의 성능을 비교하였으며, 제안 방안이 라우팅 오버헤드, 종단간 지연 시간, 패킷 전달률 측면에서 기존 방안에 비해 우수한 성능을 보임을 확인하였다.

0.5 MWth 케미컬루핑 연소 시스템 적용을 위한 신규 산소전달입자의 고온·고압 반응 특성 (Reaction Characteristics of New Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System at High Temperature and High Pressure Conditions)

  • 김정환;이도연;남형석;조성호;황병욱;백점인;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.473-482
    • /
    • 2018
  • To check applicability of recently developed new oxygen carrier for 0.5 MWth chemical looping combustion system, reactivity tests were carried out at high temperature and high pressure conditions. Pressure, temperature, gas velocity, $CH_4$ flow rate, and solid height were considered as operating variables. The new oxygen carrier (N016-R4) showed not only high fuel conversion but also high $CO_2$ selectivity within all the operating conditions in this study. The reactivity of N016-R4 particle was compared with previous oxygen carriers. The N016-R4 particle represented outstanding reactivity among 10 oxygen carriers in terms of fuel conversion and $CO_2$ selectivity.

CBB를 첨가한 NiO 산소전달입자의 물성 및 반응 특성 (The Effect of CBB(CaO·BaO·B2O3) Addition on the Physical Properties and Oxygen Transfer Reactivity of NiO-based Oxygen Carriers for Chemical Looping Combustion)

  • 백점인;조현근;엄태형;이중범;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.95-105
    • /
    • 2016
  • Spray-dried NiO-based oxygen carriers developed for chemical looping combustion required high calcination temperatures above $1300^{\circ}C$ to obtain high mechanical strength applicable to circulating fluidized-bed process. In this study, the effect of CBB ($CaO{\cdot}BaO{\cdot}B_2O_3$) addition, as a binder, on the physical properties and oxygen transfer reactivity of spray-dried NiO-based oxygen carriers was investigated. CBB addition resulted in several positive effects such as reduction of calcination temperature and increase in oxygen transfer capacity and porosity. However, oxygen transfer rate was considerably decreased. This was more apparent when a higher amount of CBB was added and MgO was added together. From the experimental results, it is concluded that CBB added NiO-based oxygen carriers are not suitable for chemical looping combustion and a new method to reduce calcination temperature while maintaining high oxygen transfer rate of NiO-based oxygen carriers should be found out.

고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향 (Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor)

  • 류호정;이동호;윤주영;장명수;배달희;박재현;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석 (Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation)

  • 류호정;남형석;황병욱;김하나;원유섭;김대욱;김동원;이규화;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.

매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구 (A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process)

  • 손은남;백승훈;이루세;손정민
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2019
  • 본 연구는 매체순환연소공정용 산소전달입자로서 $CaSnO_3$ 입자의 타당성을 조사하기 위해 수행하였다. $CaSnO_3$은 페롭스카이트 구조를 가지고, 반복되는 환원-산화 반응 후에도 구조적안정성을 보였다. 산소전달량은 환원 반응 시 결정구조 변화를 통해 계산된 이론 수치와 거의 동일한 15.4 wt%를 가졌다. 10번의 환원과 산화 반응 후에, 산소전달량과 산소전달속도는 작동 온도에서 일정하게 유지되었다. 결론적으로, $CaSnO_3$ 입자는 CLC의 산소 운반체로서 좋은 대체 물질이 될 수 있다고 판단하였다.

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측 (Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables)

  • 류호정;남형석;황병욱;김하나;원유섭;김대욱;김동원;이규화;전명훈;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.419-429
    • /
    • 2022
  • Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정 (Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor)

  • 류호정;김지웅;조완근;박문희
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.506-514
    • /
    • 2007
  • 합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자를 선정하기 위해 네 가지 산소공여입자(NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$)에 대해 환원반응기체로 모사 합성가스($H_2,\;CO2$, CO 각각 30, 10, 60%)를 사용하여 열중량 분석기(TGA)에서 환원반응특성 및 탄소침적특성을 측정 및 해석하였다. 환원반응온도가 증가함에 따라 최대전환율, 산소전달능력이 증가하였고 산소전달속도 측면에서 $900^{\circ}C$가 합성가스 연소반응에 적합한 조건으로 나타났으며 높은 환원반응온도(${\geq}800^{\circ}C$)에서는 네 가지 입자 모두에 대해 탄소침적현상이 나타나지 않았다. 네 가지 산소공여입자 중 NiO 계 산소공여입자가 CoO 계 산소공여입자에 비해 반응성이 높게 나타났으며 NiO/bentonite 입자가 산소전달속도, 탄소침적도 면에서 가장 좋은 반응성을 나타내었다. NiO/bentonite 입자에 포함된 금속산화물의 함량이 증가함에 따라 산소전달능력과 산소전달속도가 증가하는 것으로 나타나 금속산화물의 함량이 높은 산소공여입자가 매체순환식 가스연소기의 안정적인 조업에 유리한 것으로 나타났다.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.