DOI QR코드

DOI QR Code

Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables

3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측

  • 류호정 (한국에너지기술연구원) ;
  • 남형석 (한국에너지기술연구원) ;
  • 황병욱 (한국에너지기술연구원) ;
  • 김하나 (한국에너지기술연구원) ;
  • 원유섭 (한국에너지기술연구원) ;
  • 김대욱 (한국에너지기술연구원) ;
  • 김동원 (한국전력공사 전력연구원) ;
  • 이규화 (한국전력공사 전력연구원) ;
  • 전명훈 (한국전력공사 전력연구원) ;
  • 백점인 (한국전력공사 전력연구원)
  • Received : 2022.07.03
  • Accepted : 2022.08.18
  • Published : 2022.08.30

Abstract

Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

Keywords

Acknowledgement

본 연구는 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구이다(20208401010070, 3 MWth 매체순환연소 스팀생산 기술개발).

References

  1. J. C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D. E. Wiley, H. Li, M. T. Ho, E. Mangano, and S. Brandani, "Emerging CO2 capture systems", International Journal of Greenhouse Gas Control, Vol. 40, 2015, pp. 126-166, doi: https://doi.org/10.1016/j.ijggc.2015.04.018.
  2. H. J. Ryu, S. H. Jo, S. Y. Lee, D. Lee, H. Nam, B. W. Hwang, H. Kim, J. Kim, and J. I. Baek, "Solid circulation and reaction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp, 170-177, doi: https://doi.org/10.7316/KHNES.2019.30.2.170.
  3. J. Kim, D. Lee, H. Nam, S. H. Jo, B. W. Hwang, J. I. Baek, and H. J. Ryu, "Reaction characteristics of new oxygen carrier for 0.5 MWth chemical looping combustion system at high temperature and high pressure conditions", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp, 473-482, doi: https://doi.org/10.7316/KHNES.2018.29.5.473.
  4. H. J. Ryu, D. Lee, H. Nam, S. H. Jo, S. Y. Lee, Y. Won, and J. I. Baek, "Design and feasibility study on 3 MWth chemical looping combustion system", Journal of Energy and Climate Change, Vol. 14, No. 1, 2019, pp. 11-21, doi: https://data.doi.or.kr/10.22728/jecc.2019.14.1.011.
  5. D. Lee, H. Nam, H. Kim, B. W. Hwang, J. I. Baek, and H. J. Ryu, "Experimental screening of oxygen carrier for a pressurized chemical looping combustion", Fuel Processing Technology, Vol. 218, 2021, pp. 106860, doi: https://doi.org/10.1016/j.fuproc.2021.106860.
  6. H. J. Ryu, D. Lee, H. Nam, B. W. Hwang, H. Kim, Y. Won, H. W. Ra, S. M. Yoon, and J. I. Baek, "Combustion characteristics of natural gas and syngas using mass produced oxygen carrier particle in a 0.5 MWth chemical looping combustion system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 2, 2021, pp. 134-142, doi: https://doi.org/10.7316/KHNES.2021.32.2.134.
  7. H. J. Ryu, H. Nam, B. W. Hwang, H. Kim, Y. Won, D. Kim, D. W. Kim, G. H. Lee, and J. I. Baek, "Basic design and sensitivity analysis of 3 MWth chemical looping combustion system for LNG combustion and steam generation", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 374-387, doi: https://doi.org/10.7316/KHNES.2021.32.5.374.
  8. Kyung Dong City Gas, "2021 Ulsan Metropolitan City rules and rates for city gas service", Kyung Dong City Gas, 2021. Retrieved from https://www.kdgas.co.kr/AHOME/center/supplyRule.php.
  9. H. J. Ryu and G. T. Jin, "Conceptual design of 50 kW thermal chemical-looping combustor and analysis of variables", Energy, Eng. J., Vol. 12, No. 4, 2003, pp. 289-301. Retrieved from https://scienceon.kisti.re.kr/srch/selectPORSrchArti cle.do?cn=JAKO200311922056352&SITE=CLICK.
  10. H. J. Ryu, D. H. Lee, M. S. Jang, J. H. Kim, and J. I. Baek, "Conceptual design and feasibility study on 0.5 MWth pressurized chemical looping combustor", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 2, 2016, pp. 201-210, doi: http://dx.doi.org/10.7316/KHNES.2016.27.2.201.
  11. H. J. Ryu, S. H. Jo, S. Y. Lee, D. Lee, H. Nam, B. W. Hwang, H. Kim, W. Won, J. Kim, and J. I. Baek, "Effects of cyclone and freeboard geometry on solid entrainment loss in a gas-solid fluidized bed", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 4, 2019, pp. 330-337, doi: https://doi.org/10.7316/KHNES.2019.30.4.330.
  12. H. J. Ryu, S. H. Jo, S. Y. Lee, D. Lee, H. Nam, B. W. Hwang, H. Kim, Y. Won, J. Kim, and J. I. Baek, "Effect of loop seal geometry on solid circulation in a gas-solid fluidized bed", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 4, 2019, pp. 312-319, doi: https://doi.org/10.7316/KHNES.2019.30.4.312.