Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor

합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정

  • Ryu, Ho-Jung (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Kim, Ji-Woong (Department of Environment Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environment Engineering, Kyungpook National University) ;
  • Park, Moon-Hee (Department of Informational Statistics, Hoseo Unoversity)
  • 류호정 (한국에너지기술연구원 청정시스템연구센터) ;
  • 김지웅 (경북대학교 환경공학과) ;
  • 조완근 (경북대학교 환경공학과) ;
  • 박문희 (호서대학교 정보통계학과)
  • Received : 2007.02.09
  • Accepted : 2007.05.29
  • Published : 2007.10.31

Abstract

To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자를 선정하기 위해 네 가지 산소공여입자(NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$)에 대해 환원반응기체로 모사 합성가스($H_2,\;CO2$, CO 각각 30, 10, 60%)를 사용하여 열중량 분석기(TGA)에서 환원반응특성 및 탄소침적특성을 측정 및 해석하였다. 환원반응온도가 증가함에 따라 최대전환율, 산소전달능력이 증가하였고 산소전달속도 측면에서 $900^{\circ}C$가 합성가스 연소반응에 적합한 조건으로 나타났으며 높은 환원반응온도(${\geq}800^{\circ}C$)에서는 네 가지 입자 모두에 대해 탄소침적현상이 나타나지 않았다. 네 가지 산소공여입자 중 NiO 계 산소공여입자가 CoO 계 산소공여입자에 비해 반응성이 높게 나타났으며 NiO/bentonite 입자가 산소전달속도, 탄소침적도 면에서 가장 좋은 반응성을 나타내었다. NiO/bentonite 입자에 포함된 금속산화물의 함량이 증가함에 따라 산소전달능력과 산소전달속도가 증가하는 것으로 나타나 금속산화물의 함량이 높은 산소공여입자가 매체순환식 가스연소기의 안정적인 조업에 유리한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. Ryu, H. J., '$CO_2-NOx$ Free Chemical-looping Combustion Technology,' KOSEN report, http://www.kosen21.org(2003)
  2. Akai, M., Kagajo, T. and Inoue, M., 'Performance Evaluation of Fossil Power Plant with $CO_2$ Recovery and Sequestering System,' Energy Convers. Mgmt, 36, 801-804(1995) https://doi.org/10.1016/0196-8904(95)00125-W
  3. Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisma, S., 'The Characteristics of Pulverized Coal Combustion in $O_2/CO_2$ Mixture for $CO_2$ Recovery,' Energy Convers. Mgmt., 36, 805-808(1995) https://doi.org/10.1016/0196-8904(95)00126-X
  4. IEA Greenhouse Gas R&D Programme Report, 'Greenhouse Gas Emissions from Power Stations,' (2000), available on http://www.ieagreen.org.uk/sr1p.htm
  5. IEA Greenhouse Gas R&D Programme Report, 'Carbon Dioxide Capture from the Power Stations,' (2000), available on http://www.ieagreen.org.uk/sr2p.htm
  6. Wolf, J., Anheden, M. and Yan, J., 'Performance Analysis of Combined Cycles with Chemical Looping Combustion for $CO_2$ Capture,' Proceedings of 18th Pittsburg Coal Conference, December 3-7, newcastle, NSW, Australia, session 23, CD-ROM(2001)
  7. Ishida, M. and Jin, H., 'A New Advanced Power-Generation System Using Chemical-Looping Combustion,' Energy, 19(4), 415-422(1994) https://doi.org/10.1016/0360-5442(94)90120-1
  8. Hatanaka, T, Matsuda, S. and Hatano, H., 'A New-Concept Gas-Solid Combustion System MERIT for High Combustion Efficiency and Low Emissions,' Proceedings of the Thirty Second IECEC, 1, 944-948(1997)
  9. Ryu, H. J., Lim, N. Y., Bae, D. H. and Jin, G. T., 'Carbon Deposition Characteristics and Regenerative Ability of Oxygen Carrier Particles for Chemical-Looping Combustion,' Korean J. Chem. Eng., 20(1), 157-162(2003) https://doi.org/10.1007/BF02697202
  10. Ishida, M., Jin, H. and Okamoto, T., 'Kinetic Behavior of Solid Particle in Chemical-Looping Combustion: Suppressing Carbon Deposition in reduction,' Energy & Fuels, 12, 223-229(1998) https://doi.org/10.1021/ef970041p
  11. Ryu, H. J., Jin, G. T., Jo, S. H. and Bae, D. H., 'Comparison of Operating Conditions for Natural Gas Combustion and Syngas Combustion in a 50kWth Chemical-Looping Combustor,' Theories and Applications Chem. Eng., 12(2), 259(2006)
  12. Ryu, H. J., Seo, Y. and Jin, G. T., 'Natural Gas Combustion Characteristics in a Chemical-Looping Combustor with Three Different Oxygen Carrier Particles,' 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179(2006)
  13. Ryu, H. J., Bae, D. H., Jo, S. H. and Jin, G. T., 'Reaction Characteristics of Ni and NiO based Oxygen Carrier Particles for Chemical-Looping Combustor,' Korean J. Chem. Eng. Res., 42(1), 107-114(2004)
  14. Ryu, H. J. and Jin, G. T., 'Criteria for Selection of Metal Component in Oxygen Carrier Particles for Chemical-Looping Combustor,' Korean J. Chem. Eng. Res., 42(5) 588-597(2004)
  15. Ryu, H. J., Jin, G. T., Lee, S. Y. and Park, J., 'Reactivity and Attrition Resistance of Three Oxygen Carrier Particles for Chemical-Looping Combustor,' Trans. Korean Hydrogen Energy Society, 15(3), 208-219(2004)
  16. Ryu, H. J., Lim, N. Y., Jin, G. T. and Bae, S. Y., 'A Study on Reaction Characteristics of Oxygen Carrier Particles for Chemical-Looping Combustor by Hydrogen,' Theories and Applications Chem. Eng., 8(2), 4609-4612(2002)
  17. Han, G. B., Park, N. K., Ryu, S. O. and Lee, T. J., 'The Reactivity for the $SO_2$ Reduction with CO and $H_2$ over Sn-Zr Based Catalysts,' Korean J. Chem. Eng. Res., 44(4), 356-362(2006)
  18. Ishda, M. and Jin, H., 'Fundamental Study on a Novel Gas Turbine Cycle,' J. Energy Resources Tehcnology, 23, 10-14(2001)
  19. Nakano, Y., Iwamoto, S., Maeda, T., Ishida, M. and Akehata, T., 'Characterization of Reduction and Oxidation Cyclic Process by use of a $Fe_2O_3$ Medium,' Iron & Steel J. Japan, 72, 1521-1527 (1986) https://doi.org/10.2355/tetsutohagane1955.72.10_1521
  20. Jin, H., Okamoto, T. and Ishida, M., 'Development of a Novel Chemical-looping Combustion: Synthesis of a Looping Material With a Double Metal Oxide of CoO-NiO,' Energy & Fuels, 12, 1272-1277(1998) https://doi.org/10.1021/ef980080g
  21. Jin, H., Okamoto, T. and Ishida, M., 'Development of a Novel Chemical-looping Combustion: Synthesis of a Looping Material of $NiO/NiAl_2O_4$,' Industrial and Engineering Chemistry Research, 38, 126-132(1999) https://doi.org/10.1021/ie9803265
  22. Ihida, M., Yamamoto, M. and Saito, Y., 'Experimental Works on Innovative Chemical-Looping Combustor,' ECOS'99, International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy System, Tokyo, June 8-10, 306-310(1999)
  23. Adanez, J., Diego, L. F., Garcia-Labiano, F., Gayan, P. and Abad, A., 'Selection of Oxygen Carriers for Chemical-Looping Combustion,' Energy & Fuels, 18, 371-377(2004) https://doi.org/10.1021/ef0301452
  24. Jin, H. and Ishida, M., 'Reactivity Study pn a Novel Hydrogen Fueled Chemical-Looping Combustion,' Int. J. Hydrogen Energy, 26, 889-894(2001) https://doi.org/10.1016/S0360-3199(01)00015-5
  25. Lyngfelt, A., Leckner, B. and Mattisson, T., 'A Fluidized Bed Combustion Process with Inherent $CO_2$ Separation; Application of Chemical-Looping Combustion,' Chem. Eng. Sci., 56, 3101-3113 (2001) https://doi.org/10.1016/S0009-2509(01)00007-0