• Title/Summary/Keyword: Loop operations

Search Result 153, Processing Time 0.025 seconds

A New SoC Platform with an Application-Specific PLD (전용 PLD를 가진 새로운 SoC 플랫폼)

  • Lee, Jae-Jin;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2007
  • SoC which deploys software modules as well as hardware IPs on a single chip is a major revolution taking place in the implementation of a system design, and high-level synthesis is an important process of SoC design methodology. Recently, SPARK parallelizing high-level synthesis software tool has been developed. It takes a behavioral ANSI-C code as an input, schedules it using code motion and various code transformations, and then finally generates synthesizable RTL VHDL code. Although SPARK employs various loop transformation algorithms, the synthesis results generated by SPARK are not acceptable for basic signal and image processing algorithms with nested loop. In this paper we propose a SoC platform with an application-specific PLD targeting local operations which are feature of many loop algorithms used in signal and image processing, and demonstrate design process which maps behavioral specification with nested loops written in a high-level language (ANSI-C) onto 2D systolic array. Finally the derived systolic array is implemented on the proposed application-specific PLD of SoC platform.

  • PDF

Big Data Analytics for Countermeasure System Against GPS Jamming (빅데이터 분석을 활용한 GPS 전파교란 대응방안)

  • Choi, Young-Dong;Han, Kyeong-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • Artificial intelligence is closely linked to our real lives, leading innovation in various fields. Especially, as a means of transportation possessing artificial intelligence, autonomous unmanned vehicles are actively researched and are expected to be put into practical use soon. Autonomous cars and autonomous unmanned aerial vehicles are required to equip accurate navigation system so that they can find out their present position and move to their destination. At present, the navigation of transportation that we operate is mostly dependent on GPS. However, GPS is vulnerable to external intereference. In fact, since 2010, North Korea has jammed GPS several times, causing serious disruptions to mobile communications and aircraft operations. Therefore, in order to ensure safety in the operation of the autonomous unmanned vehicles and to prevent serious accidents caused by the intereference, rapid situation judgment and countermeasure are required. In this paper, based on big data and machine learning technology, we propose a countermeasure system for GPS interference that supports decision making by applying John Boyd's OODA loop cycle (detection - direction setting - determination - action).

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Emergence of Inter-organizational Collaboration Networks : Relational Capability Perspective (기업 간 협업 네트워크의 창발 : 관계 역량을 중심으로)

  • Park, Chulsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.1-18
    • /
    • 2015
  • This paper proposes relational capability as a main driver of constructing inter-organizational collaboration networks. Based on social network theory and relational view literature, three components of relational capability are constructed and implemented by an agent-based model. The components include organizational capability, structural capability, and trust between a partner and a focal firm. These three components are updated by two micro mechanisms: structural mechanism and relational mechanism. Structural mechanism is a feedback loop in which the relational capability increases structural capability and vice versa. Relational mechanism is a learning-by-doing process in which a focal firm experiences success or failure of collaboration and the experience increases or decreases cumulative trust in a partner firm. Result of agent-based simulation shows that a collaboration network emerges through interactions of firm's relational capabilities and the characteristics of emerged networks vary with the contribution of structural capability and trust to relational capability. Specifically, in case structural capability contributes more to relational capability, the average degree centrality and collaboration proportion increases as time passes and enters into an equilibrium state. In that case, almost every firms participated in the network collaborates each other so that the emerged network becomes highly cohesive. In case trust contributes more to relational capability, the results are reversed. In an equilibrium state, the balance of contribution between structural capability and trust makes an emerged network larger and maximizes average degree centrality of the network.

The evolution of the Human Systems and Simulation Laboratory in nuclear power research

  • Anna Hall;Jeffrey C. Joe;Tina M. Miyake;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.801-813
    • /
    • 2023
  • The events at Three Mile Island in the United States brought about fundamental changes in the ways that simulation would be used in nuclear operations. The need for research simulators was identified to scientifically study human-centered risk and make recommendations for process control system designs. This paper documents the human factors research conducted at the Human Systems and Simulation Laboratory (HSSL) since its inception in 2010 at Idaho National Laboratory. The facility's primary purposes are to provide support to utilities for system upgrades and to validate modernized control room concepts. In the last decade, however, as nuclear industry needs have evolved, so too have the purposes of the HSSL. Thus, beyond control room modernization, human factors researchers have evaluated the security of nuclear infrastructure from cyber adversaries and evaluated human-in-the-loop simulations for joint operations with an integrated hydrogen generation plant. Lastly, our review presents research using human reliability analysis techniques with data collected from HSSL-based studies and concludes with potential future directions for the HSSL, including severe accident management and advanced control room technologies.

Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack (단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • In this paper hardware implementation of GF($2^{191}$) elliptic curve cryptographic coprocessor which supports 7 operations such as scalar multiplication(kP), Menezes-Vanstone(MV) elliptic curve cipher/decipher algorithms, point addition(P+Q), point doubling(2P), finite-field multiplication/division is described. To meet structure resistant against simple power analysis, the ECC processor adopts the Montgomery scalar multiplication scheme which main loop operation consists of the key-independent operations. It has operational characteristics that arithmetic units, such GF_ALU, GF_MUL, and GF_DIV, which have 1, (m/8), and (m-1) fixed operation cycles in GF($2^m$), respectively, can be executed in parallel. The processor has about 68,000 gates and its simulated worst case delay time is about 7.8 ns under 0.35um CMOS technology. Because it has about 320 kbps cipher and 640 kbps rate and supports 7 finite-field operations, it can be efficiently applied to the various cryptographic and communication applications.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hun;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.230-248
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as Input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

  • PDF

A Labeling for on-the-fly Detection of Access Anomalies in Nested Parallel Loop Programs with Synchronization Operations (동기화 명령을 가지는 내포 병렬 루프 프로그램의 수행중 접근이상 탐지를 위한 레이블링)

  • 배상현;전용기;배종민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.712-714
    • /
    • 1998
  • 공유 메모리 병렬 프로그램의 주요 문제의 하나는 공유 변수에 접근하는 비 결정적 수행이다. 본 연구에서는 공유 메모리 병렬 프로그램의 접근이상(access anomaly)을 탐지하는 방법들중 수행중 탐지 기법을 보인다. 수행중 접근이상 탐지기법은 접근이상이 존재하면 적어도 하나는 탐지 할 수 있는 장점을 가지고 있다. 수행중 탐지 기법인 English-Hebrew Labeling 은 동기화 명령을 가지고 내포 병렬 루프 프로그램에서 적용될 수 있는 레이블링 기법으로 레이블링에 많은 저장장소를 필요로 하는 단점을 가지고 있었다. 본 연구에서는 새로운 레이블링 방법을 소개하고, 기존의 English-Hebrew Labeling과 최악의 경우에 기억 장소 복잡도의 측면과 시잔 복잡도의 측면에서 효율성을 비교, 분석하게 된다.

  • PDF

TRENDS IN TRACTOR DEVELOPMENT, WEST EUROPEAN VIEW (서유럽의 트랙터 개발 경향)

  • Renius, K.Th.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11a
    • /
    • pp.31-75
    • /
    • 2000
  • The tractor is the most important machine for farming keeping probably this position also for feeding the future fast growing world population. Band width of power and functions continues to increase worldwide, examples are given. Regarding the high developed countries, general farming demands as well as precision farming issues require closed loop control principles for the system "driver-tractor-implement". Progress in information technologies supports this trend, but comprehensive component and system developments are necessary to make the tractor ready for automatic or semi-automatic controls. The following technical highlights are, for example, discussed for Europe: hydropneumatic front axle suspensions, 50 km/h top speed, front brakes, electronically controlled multivalve diesel engines, automatic hydrostatic power split CVTs, load sensing hydraulics with proportional valves, improved cab and working places with "operations by wire" and more electronics on board than ever before.

  • PDF

Determination of the Entering Point and the Number of AGVs required in the Flow Shop Type FMS (Flow Shop 형태를 갖는 FMS에서의 AGV투입시점과 필요댓수의 결정)

  • Yang, Dae-Yong;Chung, Byung-Hee;Lee, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.109-115
    • /
    • 1991
  • In automated manufacturing systems, Automated Guided Vehicle(AGV) Systems are increasingly important in material handling and manufacturing operations. A considerably flexible AGV system needs to be operated with maximum effectiveness. This paper develops an algorithm for the determination of the entering point and the number of AGVs required in the Flow Shop Type FMS. We consider an AGV used as a carrier and mobile workstation. For the limited number of AGV, the entering point of an AGV on a simple loop is determined in order to maximize the utilization of AGVs. For the unlimited number of AGVs, the number of AGVs required in the FMS is determined on the basis of the entering point of AGVs. The result by the algorithm may be used as a criterion on the control of material flow and the assignment of AGVs in the FMS. A numerical example is given to illustrate the algorithm.

  • PDF