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Abstract

SoC which deploys software modules as well as hardware IPs on a single chip is a major revolution taking
place in the implementation of a system design, and high-level synthesis is an important process of SoC design
methodology. Recently, SPARK parallelizing high-level synthesis software tool has been developed. It takes a
behavioral ANSI-C code as an input, schedules it using code motion and various code transformations, and then
finally generates synthesizable RTL VHDL code.
algorithms, the synthesis results generated by SPARK are not acceptable for basic signal and image processing
algorithms with nested loop. In this paper we propose a SoC platform with an application—specific PLD targeting

Although SPARK employs various loop transformation

local operations which are feature of many loop algorithms used in signal and image processing, and demonstrate
design process which maps behavioral specification with nested loops written in a high-level language (ANSI-C)
onto 2D systolic array. Finally the derived systolic array is implemented on the proposed application-specific PLD

of SoC platform.
Keywords :

I. Introduction

The input to system-level design methodology is the
specification of an application in a high-level language
and the output is an implementation of the application
on a SoC platform. System-level design consists of an
allocation of system components such as typical

microprocessor, memories, buses and hardware

resources, and a partitioning of functionalities among
those components. The focus of this paper is an
implementation of an application on the hardware
followed by

component using high-level synthesis,
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logic synthesis and place and route. High-level
synthesis [11[2][3] has received significant attention
over the past decade. Recently, SPARK nparallelizing
HLS(high-level synthesis) software tool [3]{4] has been
developed. It is a high-level synthesis methodology
that incorporates parallelizing compiler and compiler
transformation into a traditional high-level synthesis
framework during pre-synthesis and scheduling phases.
It takes an input of specification in the C high-level
language and produces an output of synthesizable
register-transfer level (RTL) VHDL code. To handle
SPARK

transformations such as loop-invariant code motion,

loop algorithm, employs various
loop unrolling, loop index variable elimination and loop
shifting. In practice, SPARK does not
produce circuit description whose quality can compete

with manual designs in term of circuit complexity and

however,
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execution time. Most commercial FPGAs cannot handle
systolic structure with fast sampling rate for their
purpose paper
super-systolic application
PLD(programmable logic device) which combines the
high performance of ASICs with the flexibility of
PLDs.

Our work has been motivated by an enhancement of

general nature. This proposes a

array-based specific

SPARK through synthesizing a loop construct into a

2D systolic array and a proposal of a new
application-specific PLD architecture targeting systolic

design.

II. System-Level Hardware Design

In a system-level design, uniform specification of

systems, hardware/software partitioning, hardware
synthesis, software compilation and co-simulation have
become important research area. System-level design
consists of an allocation of system components such as
typical microprocessor, memories, buses and hardware
resources, and a partitioning of functionalities among
those components. Our system-level design
methodology containing an application-specific PLD,
which is a slight modification of a typical system-level
design methodology, is shown in Fig.1

PLDs have progressed through a long evolution to
reach the complexity today to support an entire SoC
and they are making inroads against ASICs along the
development time required and the level of investment
risk. Manufacturing technology advances have also
allowed PLDs to close significantly the price premium
gap with ASICs. Today, PLDs have become a critical
part of every system design. However, most
commercial PLD such as FPGAs and CPLDs cannot
handle designs with very fast sampling rate for their
We adopt an

combines  high

general-purpose architecture nature.
application-specific =~ PLD  which
performance of ASICs and flexibility of PLDs in a new
SoC platform as shown in Fig. 1.

In general, the input to the system is the behavioral
specification of an application written in a high-level
language such as C, C++, SystemC, SpecC and
System~-Verilog, and the output is an implementation
of the application on a SoC platform. In our approach,
the input to high-level synthesis is a behavioral
description written in ANSI-C as in SPARK.

System Specification
C

J

HW/SW
Partitioning

% Behavioral
C

> = Highelevel Bynthests
(SPARK parallelizing compiler
+ Mapping loops into 2D
systolic artay}

& &b

Assembly/ Machine Code FPGA/Application-specific PLD
Generation Logic synthesis and P&R

Behavioral @
C

Software Compiler

SoC Platform

Processor FPGA

Memory I

Application-
specific
PLD

1/0

Fig. 1. System-level design methodology.

An examination of the system specification is needed
to determine a hardware/software partitioning that
meets the timing, hardware, performance, and power
constraints required by the After
hardware/software partitioning is performed as shown

applications.

in Fig. 1, the software portion is compiled using
software compiler for the processor core while the
hardware portion is synthesized using SPARK and loop
transformation methodology proposed in this paper,
followed by logic synthesis and P&R. This paper is
only focused on high-level synthesis of loop construct
during system-level design process.

During the high-level synthesis, our
attempts to transform only the nested loop without a

approach

complex mix of conditional (if-then-else) constructs
into 2D if the number of

operations mapped to a resource type in any clock

inside systolic array
cycle does not exceed the upper bound of that resource
type, and generate RTL VHDL code for the derived
systolic arrays. Other portion of input specifications
except nested loops is synthesized using SPARK and
implemented on general FPGA.

This idea is motivated by the fact that synthesis
result generated by SPARK is not acceptable for
designs with nested loops such as matrix-matrix
multiplication and FIR filter, IIR filter, 2D convolution
in terms of circuit complexity and execution time. As a
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consequence, we consider synthesizing a nested loop
into a 2D systolic array to improve the synthesis
result by incarnating the parallelism available in the
algorithm description, and then finally implement the
derived systolic array on the application-specific PLD
proposed in this paper.

III. SPARK

Recently, SPARK parallelizing high-level synthesis
software tool has been developed in [3]. The SPARK
accepts a behavioral description of a design in
ANSI-C, creates the intermediate representation, runs a
data dependency analysis pass, schedules the design,
binds the resources, performs control synthesis, and
finally generates an output in RTL VHDL.

The SPARK first applies a set of coarse-grain and
fine-grain code transformations to the input description
during a pre-synthesis phase before performing the
traditional high-level synthesis tasks of scheduling,
allocation and binding. The transformations in the
include (a) coarse-level code

pre-synthesis phase

restructuring by  function inlining and loop
transformations (loop unrolling, loop fusion, etc.) (b)
transformations that remove unnecessary and redundant
operations such as common sub-expression elimination
(CSE), copy propagation, and dead code elimination and
(c) transformations such as loop-invariant code motion.

The pre-synthesis followed by the

scheduling and allocation phase. The transformations

phase is

toolbox contains speculative code motion
transformations, the percolation and trailblazing code
motion techniques and dynamic renaming of variables,
etc. Besides the

transformations such as dynamic CSE and dynamic

traditional high-level synthesis

copy propagation, branch balancing technique also

dynamically adds scheduling steps in conditional

branches to enable code motions.
The presence of nested loops in application codes
parallelizing code motion

limits the scope of

transformations to within loop iterations. To achieve

the performance improvement, SPARK uses a
technique called loop shifting that incrementally
exploits loop level parallelism across loop
transformation.

Although SPARK employs various loop

transformations such as loop-invariant code motion,
loop unrolling, loop index variable elimination and loop
shifting, the synthesis results generated by SPARK is

not acceptable for basic signal and image processing
algorithms with nested loops such as matrix-matrix
multiplication and FIR filter. Accordingly, we consider
a transformation mapping a nested loop onto a 2D
systolic array to improve the synthesis result by
incarnating as much parallelism as can be exploited
with the available resource

IV. Mapping Loops onto 2D Systolic Array

This approach is performed during high-level
synthesis only if the number of operations mapped to a
resource type in any clock cycle does not exceed the
upper bound of that resource type. The final output of
our approach is the generation of RTL VHDL code for
derived systolic array.

A systolic array [5][6] formed by interconnecting a
set of identical data-processing cells in a uniform
manner is a combination of an algorithm and a circuit
that implements it, and is closely related conceptually
to arithmetic pipeline. The underlying principle of
systolic array is to achieve massive parallelism with a
overhead, and generally

minimum communication

speaking, a systolic array is easy to implement
because of its regularity and easy to reconfigure
because of its modularity. Most algorithms of signal
processing and other engineering application require the
use of a massively parallel computing structure, that
is, systolic array structure, to achieve acceptable
performance.

Methodology mapping nested loop algorithms into 2D
systolic array has been proposed in [7] and we briefly
summarize the loop transforming algorithm in [7] for

readers’ convenience.

Mapping policy in this paper guarantees that
neighboring iterations of the N-dimensional
(1 £ N<3) index space will be assigned to
neighboring cells of the (N-1)-dimensional target

systolic array.

Localized operations, intensive computation, and
matrix operations are features of many loop algorithms
used in signal and image processing. In this paper, we
assume that the computational structure consists of a
2D mesh-connected systolic array. Each cell in a 2D
systolic array can be indexed as Z2-tuple in 2
coordinates as shown in Fig. 2. We show only 4 by 4

cells for the purpose of simplicity.
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]

Fig. 2. Structure of 2D systolic array.

In this structure, each cell can only be connected to
its neighbor. There are at most 5 communication
connections, 4 Dbidirectional connections to nearest
neighbors and one connection within the cell making
self-loop. The interconnections between cells are
described by the

coordinates of adjacent cells, and can be represented

difference vectors between the

by a matrix of inter-connection as follow.
001 0 —1
P:{P1P2P3P4p5]:[0 10-1 0 ] (1)

The structural details of the cells, I/O, execution
time and communication are determined after mapping
loops onto systolic array processor. Throughout this
paper, we deal with algorithms that are regular in
terms of the computational patterns, and focus on
which have the
FOR-loop structure with uniform data dependencies.

algorithms form of the nested
Two steps are involved in mapping a loop algorithm
systolic array [56]. The first step is a

scheduling. Once the scheduling is fixed, the second

onto a

step is process assignment. Scheduling specifies the
sequence of operation in all the cells. A schedule
function represents a mapping from the N-dimensional
index space onto a 1D schedule (time) space. A linear
schedule is based on a set of parallel and uniformly
spaced hyperplanes called equitemporial hyperplane. All
the nodes on the same hyperplane must be processed
at the same time. Mathematically, the schedule can be
represented by a schedule vector S, pointing to the

normal direction of the hyperplane. Processor
assignment maps each node of a dependency
graph(DG) onto a systolic array cell. It is common to

use linear projection for processor assignment.

Mathematically, linear projection is often represented

by projection vector N.
To map loops onto a systolic array mathematically,
we search for the transformation matrix defined below.

] - t21 t22 t23 @)
t31 t32 t33

Where mapping S and R are defined as S: J"—J!
and R:J"—J"". M is n by n matrix since we

consider only linear transform in this paper. Algorithm
dependencies D are transformed into D = MD. The

mapping S is selected such that the transformed data
dependencies matrix IJ has positive entry in the first
row. This means that a causality should be enforced in
a permissible schedule.

After mapping loop algorithms onto systolic array, a
backend code generation pass outputs RTL VHDL code
which is synthesizable using a logic synthesizer such
as Synopsys Design Compiler [8, 9]. The length of the
register is easily identified from algorithm code. The
computational elements such as multiplier and adder
are selected from a set of computation C, and are
designed using component instantiation of Synopsys
Design Ware. Timing and data communication captured
by transformed data dependencies give crucial
information on generating VHDL code for datapath of
each cell and intercommunication between cells. The
generated VHDL output is a structural description, so
it determines a fully specified systolic architecture
through the proposed mapping method and leaves no

freedom to the CAD tool to reconstruct it.
V. Application-Specific PLD

In a systolic array, to achieve even higher degree of
concurrency, it is_ desirable to make cells of systolic
array themselves systolic array as well. This
systolization procedure of implementing cell as another
systolic array could be applied repeatitively in a
hierarchical manner until a cell having only primitive
operators is obtained. We will refer to the systolic
array resulted from the above strategy as
super-systolic array [10].

After loop construct is mapped onto 2D systolic
array, the derived systolic array is transformed into
super-systolic array, and then finally implemented on

the application-specific PLD proposed in this paper.
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This architecture combines the high performance of
ASICs with the flexibility of PLDs and it offers a
significant alternative view on the programmable logic
devices. The super-systolic array is ideal for a newly
proposed PLD
area-efficiency, P&R and clock speed.

architecture when it comes to

In this section, we describe architecture of the
application-specific PLD. A PLD architecture targeting
a super-systolic array for arithmetic operations is
shown in Fig. 3.
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Fig. 3. Application-specific PLD architecture.

As shown in Fig. 3, the architecture consists of
Modules(LMs),
and programmable interconnections to route

configurable Logic configurable 1/O
Blocks,
signals. The number of LMs in a real chip would be
determined on considering the design constraints such

as chip size, target applications, cost, etc.
5.1 Logic Module

Each LM is made up of a Logic Block(LB) which

Global interconnecton Inter-LM connection

Y

ke

consists of five Logic Units(LUs) and an Array
Block(AB) as shown in Fig. 4

The LU and AB will be explained in detail in the
kinds of
global interconnection,

subsequent sections. There are three
programmable interconnections:
inter-LM connection and intra-LM connection. The
overall need for routing can be classified into three
categories, routing in each category being mapped to
one of three programmable interconnections: global,
inter-LM or intra-LM. The routing is to be performed
in a hierarchical manner on the proposed PLD. Fig. 4
shows one LM including all of its components with
detailed programmable interconnections. The routing
or programmable interconnections such as
global, inter-LM and intra-LM, can be added to

accommodate the demand for signal propagations of

channel,

the target application. The proposed architecture works
on circuits with feedback and bi-directional dataflow to
Global

interconnection represented by bold line is used to

satisfy the nature of systolic array.
route global signals such as power, clock and primary

inputs/outputs.

5.2 Logic Unit(LU) and PSFG

The fundamental logic cell in the proposed PLD is
based on PSFG(programmable symmetric
generator) and builds systolic array efficiently while

function

that of existing FPGAs such as Xilinx is based on
multiplexer and look-up table without any preference
for computational The 3-variable PSFG
consists of two planes as shown in Fig. 5.

structure.

Global i

Inter-LM i E/”g i

C ion switch

|| Logic{ | || Logic| |
L Unit || || Unit

|| Logic| |1 | Logic{ || |Logic| [{||[ | Array ||
Unit Unit Unit | [{||| | Block |_|

Intra-LM

X2

Intra-LM connection

Fig. 4. Layout of a Logic Module
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Fig. 5. 3—Variable PSFG.

The triangular structure of the first plane is planar
and regular. It realizes all positive unate 3-variable
symmetric functions. A function is unate if it can be
represented by a disjunctive or conjunctive expression
in which no variable appears in both its
complementend and uncomplemented forms. Horizontal
outputs from the first plane are EXOR-ed in the
second plane to generate arbitrary symmetric functions
at the bottom. The control signals on the second plane
can take a value of ‘0’ or 'l’. The programmability on
obtained by

disconnecting rectangular shaped EXOR gates in each

the second plane is connecting or
column to achieve certain symmetric functions. As
shown in Fig. 6, arbitrary 2-variable symmetric
functions such as NOR, XOR, AND, OR and NAND
can efficiently be realized using 3-variable PSFG by
setting one of inputs to 0.

NOR XOR AND

OR NAND

Fig. 6. Realization of 2-variable symmetric functions.

The LU based on 3-variable PSFG is shown in Fig.
7. It contains three flip-flops for storage elements,
three multiplexer to route the logic outputs to external
resources and three 2-input AND gates for input
control of PSFG. The LU in Fig. 7 is programmed as
a systolic multiplier [10]. In Fig. 8, one PSFG slice
implements both sum and carry of a 1-bit full adder.
Symmetric function with more than three inputs can

be implemented as a cascade of 3-variable PSFG
through EXOR-based Davio expansion [11].

PSFG

T
R —

I

Fig. 7. Structure of a Logic Unit.

Fig. 8. Structure of a PSFG.

5.3 Array Block(AB)

The AB consisting of two 32-bit shift registers and
two multiplexers as is shown in Fig. 9 is introduced to
synchronize the bit dataflow between LBs to guarantee
the generation and summation of the intermediate
results according to recurrence relation of the behavior
to be implemented on the proposed PLD.

Shift Register

H

Shift Register

Fig. 9. Structure of an Array Block
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VI. Experimental Results and Performance

Evaluation.

To compare the results from transforming loops into
a 2D systolic array mentioned in this paper and those
from SPARK, the VHDL codes for matrix-matrix
multiplication and FIR filter from each case are
synthesized using Synopsys Design Compiler based on
Hynix 0.35um cell library. Table 1 and Table 2 list the
synthesis results of IR filter and 2D convolution,
respectively. As shown in Table 1 and Table 2 the
proposed C-to-VHDL loop synthesis achieves synthesis
results that are better than those achieved from a
current version of SPARK. Compared to SPARK, our
approach achieves up to 73% reduction in the hardware
complexity and up to 55% speed up in the execution
time for two test designs.

To show the superiority of the PLD architecture
this existing FPGA
architecture, super-systolic IIR filter and super-systolic

proposed in paper to the
array for 2D convolution are implemented onto a Xilinx
FPGA. Compared to the existing FPGA architecture
whose routing process uses some of SLICEs to
complete the whole connectivity, it is estimated that
the proposed PLD, which does not require extra LUs
to complete routing process, is more efficient in terms
of hardware complexity. Table 3 and Table 4 show
that our proposed architecture does much better in
speed for three designs under test. Note that we have
assumed that the proposed PLD adopts the same
technology as Xilinx XCV200 [12], applying the same
data to the PLD.

The proposed PLD architecture can easily implement
basic arithmetic and signal processing
algorithms adder,
multiplier, matrix-matrix multiplication, FIR filter, IIR

filter, 2D convolution, and FFT because of the property

operations

such as ripple carry bit-serial

that the recurrence relation of such an algorithm is
Our

experimental results are not meant to be a justification

efficiently mapped onto a systolic structure.
for the architecture in terms of physical data. Even
though we provide only simulation results without
actual fabrication of the proposed PLD chip, it is
interesting to see that the proposed PLD can achieve
implementation results that are better than those
achieved on existing FPGAs for such designs that are

highly regular like arithmetic circuits.

Table 1. Synthesis of IIR filter

Description SPARK The proposed
approach
The number of 4 4
coefficient
Length of input and 4 4
coefficient (bit)
Total cell area
(2-input NAND) 6843 86
Worst clock cycle(ns) 24.04 12.23

Table 2. Synthesis of 2D convolution

Description SPARK The proposed
approach
Mask size 2 by 2 2 by 2
Length of input and 4 4
coefficient (bit)
Total cell area
(2-input NAND) 12792 3460
Worst clock cycle(ns) 32.08 14.35

Table 3. Implementation of super-systolic IIR filter

.. FPGA The proposed
Description (XCV200) PLD
The number of
.. 4 4
coefficient
Length of input and 4 4
coefficient (bit)
Hardware complexity | 72 SLICEs 451U
Total P&R time(sec) 2 1
Worst clock cycle(ns) 7.432 1.25

Table 4. Implementation of super-systolic array for 2D

convolution
e FPGA The proposed

Description (XCV200) PLD

Mask size 2 by 2 2 by 2
Length of input and 4 4

coefficient (bit)

Hardware complexity | 151 SLICEs 92LU
Total P&R time(sec) 3 1
Worst clock cycle(ns) 12.132 1.25
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VII. Conclusions

proposed system—-on-a—chip

platform with an application-specific PLD targeting

This paper a new
local operations involving loop algorithms used in
Also, this paper
behavioral

processing.
which
specification with nested loops of an application written

image
process

signal and
demonstrated maps
in a high-level language onto the 2D systolic array.
The derived
super-systolic array and finally implemented on the

systolic array is transformed into
proposed application-specific PLD.

Being compared to the nested loop synthesis of
SPARK, the loop synthesis approach in this paper
results in about 70% reduction in both area and
execution time, and implementation of the derived
systolic array on application-specific PLD can achieve
implementation results that are better than those
achieved on existing FPGAs for such a design that is

highly regular like MAC operations.
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