• Title/Summary/Keyword: Longitudinal Dispersion

Search Result 104, Processing Time 0.042 seconds

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Eulerian-Lagrangian Split-Operator Method for the Longitudinal Dispersion Equation (종확산 방정식에 대한 Eulerian-Lagrangian 연산자 분리방법)

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.131-141
    • /
    • 1994
  • Three characteristics-based split-operator methods were applied to a longitudinal pollutant dispersion problem, and the results were compared with those of several Eulerian schemes. The split-operator methods consisted of generalized upwind, two-point fourth-order and sixth-order Holly-Preissmann schemes, respectively, for the advection calculation, and the Crank-Nicholson scheme for the diffusion calculation. Compared with the Eulerian schemes tested, split-operator methods using the Holly-Preissmann schemes gave much more accurate computational results. Eulerian schemes using centered difference approximations for the advection term resulted in numerical oscillations, and those using backward difference resulted in numerical diffusion, both of which were more severe for smaller value of the longitudinal dispersion coefficient.

  • PDF

Wave Propagation in the Strip Plate with Longitudinal Stiffeners

  • Kim, H.;Ryue, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.102-107
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for many engineering applications. In this study, vibration characteristics of strip plates which have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element approach is used in this study which is known as an effect tool for waveguide structures. WFE method requires only cross-sectional FE model and uses theoretical harmonic solutions for the wave propagation along the longitudinal direction. First of all for a simple strip plate, WFE results are compared with theoretical ones such as the dispersion diagrams, point mobilities, etc. to validate the numerical model. Then in the numerical analysis, the several different types of longitudinal stiffeners are included to the plate model to investigate the effects of the stiffeners in terms of the dispersion curves and mobilities.

  • PDF

On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.143-160
    • /
    • 2017
  • The paper studies the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of linear viscoelastic materials. Investigations are made by utilizing the exact equations of motion of the theory of viscoelasticity. The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the attenuation of the waves under consideration. Specific numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov. In particular, how the rheological parameters influence the attenuation of the axisymmetric longitudinal waves propagating in the cylinder under consideration, is established.

Correlation of Soil Particle Distribution and Hydrodynamic Dispersion Mechanism in Ununiformed Soils Through Laboratory Column Tests (실내주상실험에 의한 불균일한 토양의 입도와 수리분산기작의 상관성 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.28-34
    • /
    • 2006
  • Laboratory column tests using $Cl^-$ tracer were conducted to study the correlation of soil particle distribution and hydrodynamic dispersion mechanism with three kinds of ununiformed soil samples, in which the ratio of gravel and sand versus silt and clay is 24.5 for S-1 soil, 4.48 for S-2 soil, and 0.4 for S-3 soil. Chloride breakthrough curves with time were fitted with gaussian functions. The relative concentrations of chloride were converged to 1.0 after 0.7 hours for S-1, 6.3 hours for S-2, and 389 hours for S-3. Average linear velocity, longitudinal dispersion coefficient, and longitudinal dispersivity were calculated by chloride breakthrough curves. Longitudinal dispersion coefficients were $1.20{\times}10^{-4}\;m^2/sec$ for S-1, $8.87{\times}10^{-7}\;m^2/sec$ for S-2, and $1.94{\times}10^{-9}\;m^2/sec$ for S-3. Peclet numbers calculated by the molecular diffusion coefficient of chloride and the mean grain diameters of soils were $2.59{\times}10^2$ for S-1, $6.27{\times}10^0$ for S-2, and $1.35{\times}10^{-4}$ for S-3. Mechanical dispersion was dominant for the hydrodynamic dispersion mechanism of S-1. Both mechanical dispersion and molecular diffusion were dominant for the hydrodynamic dispersion mechanism of S-2, but mechanical dispersion was ascendant over molecular diffusion. Hydrodynamic dispersion in S-3 was occurred mainly by molecular diffusion. When plotting three soils on the graph of $D_L/D_m$ versus Peclet number produced by Bijeljic and Blunt (2006), the values of $D_L/D_m$ for S-1 and S-2 were more than 2.0 order compared to their graph. S-3 was not plotted on their graph because the Peclet number was as small as $1.35{\times}10^{-4}$.

An Esitimation of Lognitudinal Dispersion Coefficient in Natural Stram Using Hydraulic Model (수리모형을 이용한 자연하천에서 종확산계수 추정)

  • Yun, Se-Ui;Han, Geon-Yeon;Han, Jeong-Seok;Kim, Jeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • To estimate the longitudinal dispersion coefficient at the downstream of Jungrang-River, the undistorted 1/20 scale hydraulic model was used in this study. Experiments were conducted for dry season discharge, and Rhodamine B was used as a tracer. The relationship curve between concentration and conductivity of Rhodamine B was otained by laboratory test, and the conductivity which was measured in hydraulic model was converted to concentration using this curve. The longitudinal dispersion coefficient was calculated using the relationship between the peak concentration and the time to peak concentration. The results of this study were compared with the calculated values by the empirical equations for the longitudinal dispersion coefficient and with the field data. The results of comparison show that Parker's equation underestimates, and Liu'g equation and Iwasa and Aya's one overestimate, and McQuivey and Keefer's equations, Fischer's one, Magazine's one, and Seo and Cheong's one predict relatively well. The measured data sets were relatively close to the observed ones in natural river. The longitudinal dispersion coefficient at the downstream of Jungrang-River was estimated $10\textrm{m}^2/s$.

  • PDF

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

A Study on the Dilution-Dispersion of Pollutant by Hydraulic Model (수리 모형실험을 통한 오염물질의 희석확산산에 관한 연구)

  • 박정은
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.237-243
    • /
    • 1983
  • This study examines the dilution-dispersion phenomen in the main stream when a polluted branch stream flows into it. A hydraulic model was used for it. As the discharge of the main stream and the branch one were changing, the qualitative dispersion, the stream regimen, the velocity of the flow and the hydraulic properties were observed. It was found that the faster the velocity was and the greater the flow discharge ratio was, the more dilution-dispersion phenomenon occurred. And as the velocity of the flow was increasing, so was the longitudinal dispersion velocity. But the transverse dispersion velocity was relatively reduced. Therefore, it is concluded that the dispersion by the distribution of velocity is increased.

  • PDF

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.