• Title/Summary/Keyword: Long non-coding RNA

Search Result 72, Processing Time 0.035 seconds

Beyond X-Chromosome Inactivation: The Oncogenic Facet of XIST in Human Cancers

  • Madhi, Hamadi;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • Long-non coding RNAs (LncRNAs) constitute a wide and extremely diverse family of RNA transcripts that are greater than 200 base pairs in length and are not translated into proteins. X-inactive specific transcript (XIST) was the first long non-coding RNA to be discovered, back in 1991. Its function in X-chromosome inactivation has been extensively studied for three decades, though other functional roles of XIST that involve a variety of fascinating mechanisms remain to be elucidated. Here, we review the emerging oncogenic role of XIST in various human cancers.

Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle

  • Yoon, Joon;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1044-1051
    • /
    • 2019
  • Objective: Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. Methods: We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. Results: As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. Conclusion: In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.

Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential

  • Fang, Ting-Ting;Sun, Xiao-Jing;Chen, Jie;Zhao, Yan;Sun, Rui-Xia;Ren, Ning;Liu, Bin-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10513-10524
    • /
    • 2015
  • Background: Metastasis is a major reason for poor prognosis in patients with cancer, including hepatocellular carcinoma (HCC). A salient feature is the ability of cancer cells to colonize different organs. Long non-coding RNAs (lncRNAs) play important roles in numerous cellular processes, including metastasis. Materials and Methods: In this study, the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2) were assessed using the Arraystar Human LncRNA Array v2.0, which contains 33,045 lncRNAs and 30,215 mRNAs. Coding-non-coding gene co-expression (CNC) networks were constructed and gene set enrichment analysis (GSEA) was performed to identify lncRNAs with potential functions in organ-specific metastasis. Levels of two representative lncRNAs and one representative mRNA, RP5-1014O16.1, lincRNA-TSPAN8 and TSPAN8, were further detected in HCC cell lines with differing metastasis potential by qRT-PCR. Results: Using microarray data, we identified 1,482 lncRNAs and 1,629 mRNAs that were differentially expressed (${\geq}1.5$ fold-change) between the two HCC cell lines. The most upregulated lncRNAs in H2 were RP11-672F9.1, RP5-1014O16.1, and RP11-501G6.1, while the most downregulated ones were lincRNA-TSPAN8, lincRNA-CALCA, C14orf132, NCRNA00173, and CR613944. The most upregulated mRNAs in H2 were C15orf48, PSG2, and PSG8, while the most downregulated ones were CALCB, CD81, CD24, TSPAN8, and SOST. Among them, lincRNA-TSPAN8 and TSPAN8 were found highly expressed in high lung metastatic potential HCC cells, while lowly expressed in no or low lung metastatic potential HCC cells. RP5-1014O16.1 was highly expressed in high lymphatic metastatic potential HCC cell lines, while lowly expressed in no lymphatic metastatic potential HCC cell lines. Conclusions: We provide the first detailed description of lncRNA expression profiles related to organ-specific metastasis in HCC. We demonstrated that a large number of lncRNAs may play important roles in driving HCC cells to metastasize to different sites; these lncRNAs may provide novel molecular biomarkers and offer a new basis for combating metastasis in HCC cases.

AN IMPROVED ALGORITHM FOR RNA SECONDARY STRUCTURE PREDICTION

  • Namsrai Oyun-Erdene;Jung Kwang Su;Kim Sunshin;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.280-282
    • /
    • 2005
  • A ribonucleic acid (RNA) is one of the two types of nucleic acids found in living organisms. An RNA molecule represents a long chain of monomers called nucleotides. The sequence of nucleotides of an RNA molecule constitutes its primary structure, and the pattern of pairing between nucleotides determines the secondary structure of an RNA. Non-coding RNA genes produce transcripts that exert their function without ever producing proteins. Predicting the secondary structure of non-coding RNAs is very important for understanding their functions. We focus on Nussinov's algorithm as useful techniques for predicting RNA secondary structures. We introduce a new traceback matrix and scoring table to improve above algorithm. And the improved algorithm provides better levels of performance than the originals.

  • PDF

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

A Long Non-Coding RNA snaR Contributes to 5-Fluorouracil Resistance in Human Colon Cancer Cells

  • Lee, Heejin;Kim, Chongtae;Ku, Ja-Lok;Kim, Wook;Kim Yoon, Sungjoo;Kuh, Hyo-Jeong;Lee, Jeong-Hwa;Nam, Suk Woo;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.540-546
    • /
    • 2014
  • Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were down-regulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.

Isolation and Functional Examination of the Long Non-Coding RNA Redrum

  • Lee, Yerim;Park, Charny;Lee, Sanghyuk;Lee, Daekee;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.

Functional Roles of Long Non-coding RNA in Human Breast Cancer

  • Ye, Ni;Wang, Bin;Quan, Zi-Fang;Cao, San-Jie;Wen, Xin-Tian;Huang, Yong;Huang, Xiao-Bo;Wu, Rui;Ma, Xiao-Ping;Yan, Qi-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5993-5997
    • /
    • 2014
  • The discovery of long noncoding RNA (LncRNA) changes our view of transcriptional and posttranscriptional regulation of gene expression. With application of new research techniques such as high-throughput sequencing, the biological functions of LncRNAs are gradually becoming to be understood. Multiple studies have shown that LncRNAs serve as carcinogenic factors or tumor suppressors in breast cancer with abnormal expression, prompts the question of whether they have potential value in predicting the stages and survival rate of breast cancer patients, and also as therapeutic targets. Focusing on the latest research data, this review mainly summarizes the tumorigenic mechanisms of certain LncRNAs in breast cancer, in order to provide a theoretical basis for finding safer, more effective treatment of breast cancer at the LncRNA molecular level.

The Biological Functions of Plant Long Noncoding RNAs (식물의 긴비암호화 RNA들의 생물학적 기능)

  • Kim, Jee Hye;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1097-1104
    • /
    • 2016
  • With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.