• 제목/요약/키워드: Logistic Analysis

검색결과 4,904건 처리시간 0.027초

로지스틱 회귀분석을 이용한 BIM 설계 검토에 의하여 발견된 설계 오류와 그 영향도간의 관계 분석 (An Analysis on Relations between Design Errors Detected during BIM-based Design Validation and the Impacts Using Logistic Regression)

  • 원종성
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.264-265
    • /
    • 2017
  • This paper aims to analyze relations between design errors prevented by building information modeling (BIM)-based design validation and their impacts in order to identify critical consideration factors for successfully implementing BIM-based design validation in the architecture, engineering, and construction (AEC) projects. More than 800 design errors detected by BIM-based design validation in two BIM-based projects in South Korea are categorized according to its causes and work types. The relations between causes and work types of design errors and project delay, cost overrun, low quality, and rework generation that can be caused by the errors are analyzed through conducting logistic regression. Characteristics of each design error are analyzed by conducting face-to-face interviews with practitioners in the two BIM-based projects. As the results, the impacts of design error causes on predicting project delay, cost overrun, low quality, and rework generation were the highest.

  • PDF

합류하는 두 항공기간 도착순서 결정에 대한 로지스틱회귀 예측 모형 (Prediction Model with a Logistic Regression of Sequencing Two Arrival Flows)

  • 정소연;이금진
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.42-48
    • /
    • 2015
  • This paper has its purpose on constructing a prediction model of the arrival sequencing strategy which reflects the actual sequencing patterns of air traffic controllers. As the first step, we analyzed a pair-wise sequencing of two aircraft entering TMA from different entering points. Based on the historical trajectory data, several traffic factors such as time, speed and traffic density were examined for the model. With statistically significant factors, we constructed a prediction model of arrival sequencing through a binary logistic regression analysis. With the estimated coefficients, the performance of the model was conducted through a cross validation.

Analysis of Nested Case-Control Study Designs: Revisiting the Inverse Probability Weighting Method

  • Kim, Ryung S.
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.455-466
    • /
    • 2013
  • In nested case-control studies, the most common way to make inference under a proportional hazards model is the conditional logistic approach of Thomas (1977). Inclusion probability methods are more efficient than the conditional logistic approach of Thomas; however, the epidemiology research community has not accepted the methods as a replacement of the Thomas' method. This paper promotes the inverse probability weighting method originally proposed by Samuelsen (1997) in combination with an approximate jackknife standard error that can be easily computed using existing software. Simulation studies demonstrate that this approach yields valid type 1 errors and greater powers than the conditional logistic approach in nested case-control designs across various sample sizes and magnitudes of the hazard ratios. A generalization of the method is also made to incorporate additional matching and the stratified Cox model. The proposed method is illustrated with data from a cohort of children with Wilm's tumor to study the association between histological signatures and relapses.

Sparse Logistic Regression 기반 비음수 행렬 분석을 통한 성별 인식 (Gender Classification using Non-Negative Matrix Analysis with Sparse Logistic Regression)

  • 허동철;;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.373-376
    • /
    • 2011
  • 얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.

제지산업 수급 전망 및 물류 공동화 방안에 관한 사례 연구 (A study on the forecast of Paper Industry and Logistic Innovation Activity)

  • 최춘호;최종수;김하곤;김부열;유강철;강경식
    • 대한안전경영과학회지
    • /
    • 제12권3호
    • /
    • pp.183-188
    • /
    • 2010
  • The recent market trend of demand and supply of domestic paper industry expected confusion in near future due to massive imports of low cost product because of suddenly emerging of China's mass productive equipment and capacity. Related domestic industry is deploying joint co-coperative partnership and logistic service, joint operations of transportation and distribution center and innovation activity for customer satisfaction. This paper tries to present a solution through analysis of related paper industry a case study.

Blur Detection through Multinomial Logistic Regression based Adaptive Threshold

  • Mahmood, Muhammad Tariq;Siddiqui, Shahbaz Ahmed;Choi, Young Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.110-115
    • /
    • 2019
  • Blur detection and segmentation play vital role in many computer vision applications. Among various methods, local binary pattern based methods provide reasonable blur detection results. However, in conventional local binary pattern based methods, the blur map is computed by using a fixed threshold irrespective of the type and level of blur. It may not be suitable for images with variations in imaging conditions and blur. In this paper we propose an effective method based on local binary pattern with adaptive threshold for blur detection. The adaptive threshold is computed based on the model learned through the multinomial logistic regression. The performance of the proposed method is evaluated using different datasets. The comparative analysis not only demonstrates the effectiveness of the proposed method but also exhibits it superiority over the existing methods.

Generalization of Road Network using Logistic Regression

  • Park, Woojin;Huh, Yong
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.91-97
    • /
    • 2019
  • In automatic map generalization, the formalization of cartographic principles is important. This study proposes and evaluates the selection method for road network generalization that analyzes existing maps using reverse engineering and formalizes the selection rules for the road network. Existing maps with a 1:5,000 scale and a 1:25,000 scale are compared, and the criteria for selection of the road network data and the relative importance of each network object are determined and analyzed using $T{\ddot{o}}pfer^{\prime}s$ Radical Law as well as the logistic regression model. The selection model derived from the analysis result is applied to the test data, and road network data for the 1:25,000 scale map are generated from the digital topographic map on a 1:5,000 scale. The selected road network is compared with the existing road network data on the 1:25,000 scale for a qualitative and quantitative evaluation. The result indicates that more than 80% of road objects are matched to existing data.

다변량 분석 기법을 활용한 강우 지역빈도해석 (Regional Rainfall Frequency Analysis by Multivariate Techniques)

  • 남우성;김태순;신주영;허준행
    • 한국수자원학회논문집
    • /
    • 제41권5호
    • /
    • pp.517-525
    • /
    • 2008
  • 지역빈도해석을 통한 확률강우량 산정 결과는 수문학적으로 동질한 지역의 구분 결과에 따라 달라진다. 지역을 구분할 때에는 강우에 영향을 미치는 다양한 변수들이 사용될 수 있다. 변수의 유형과 개수가 지역 구분의 효율성을 좌우하기 때문에 활용 가능한 모든 변수들의 정보를 요약할 수 있는 변수들을 선택하는 것이 지역 구분의 효율성 면에서 유리하다고 할 수 있다. 이런 면에서 지역 구분의 효율성을 증대시킬 목적으로 다변량 분석 기법이 활용될 수 있다. 본 연구에서는 변수들 간의 상관관계를 바탕으로 모든 변수가 표현하는 정보를 대표할 수 있는 더 적은 수의 변수를 선정하는 기법으로 Procrustes analysis를 활용하였다. 이 기법을 활용하여 42개의 강우 관련 변수들을 21개로 줄일 수 있었다. 선정된 변수들을 바탕으로 요인분석을 수행하여 5개의 요인을 추출하였고, 이를 근거로 군집해석 기법인 fuzzy-c means 기법을 활용하여 지역을 구분하였다. 68개 강우 관측 지점을 대상으로 지역을 구분한 결과 6개의 지역으로 구분되었다. 6개의 지역에서 GEV 분포가 적합한 것으로 나타났고, 3변수 대수정규 분포와 generalized logistic 분포가 5개 지역에서 적합한 것으로 나타났다. 기존 연구 결과와의 비교를 위해 generalized logistic 분포를 바탕으로 지점빈도해석, 홍수지수법, 지역형상추정법을 적용하여 확률강우량을 산정하였다.

사전검사를 통한 고립성 폐결절 환자에서의 악성 확률 타당성에 대한 연구 (A Study to Validate the Pretest Probability of Malignancy in Solitary Pulmonary Nodule)

  • 장주현;박성훈;최정희;이창률;황용일;신태림;박용범;이재영;장승훈;김철홍;박상면;김동규;이명구;현인규;정기석
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권2호
    • /
    • pp.105-112
    • /
    • 2009
  • Background: Solitary pulmonary nodules (SPN) are encountered incidentally in 0.2% of patients who undergo chest X-ray or chest CT. Although SPN has malignant potential, it cannot be treated surgically by biopsy in all patients. The first stage is to determine if patients with SPN require periodic observation and biopsy or resection. An important early step in the management of patients with SPN is to estimate the clinical pretest probability of a malignancy. In every patient with SPN, it is recommended that clinicians estimate the pretest probability of a malignancy either qualitatively using clinical judgment or quantitatively using a validated model. This study examined whether Bayesian analysis or multiple logistic regression analysis is more predictive of the probability of a malignancy in SPN. Methods: From January 2005 to December 2008, this study enrolled 63 participants with SPN at the Kangnam Sacred Hospital. The accuracy of Bayesian analysis and Bayesian analysis with a FDG-PET scan, and Multiple logistic regression analysis was compared retrospectively. The accurate probability of a malignancy in a patient was compared by taking the chest CT and pathology of SPN patients with <30 mm at CXR incidentally. Results: From those participated in study, 27 people (42.9%) were classified as having a malignancy, and 36 people were benign. The result of the malignant estimation by Bayesian analysis was 0.779 (95% confidence interval [CI], 0.657 to 0.874). Using Multiple logistic regression analysis, the result was 0.684 (95% CI, 0.555 to 0.796). This suggests that Bayesian analysis provides a more accurate examination than multiple logistic regression analysis. Conclusion: Bayesian analysis is better than multiple logistic regression analysis in predicting the probability of a malignancy in solitary pulmonary nodules but the difference was not statistically significant.

제3기 퇴적암 및 화산암 분포지의 산사태 예측모델 (A Prediction Model of Landslides in the Tertiary Sedimentary Rocks and Volcanic Rocks Area)

  • 채병곤;김원영;나종화;조용찬;김경수;이춘오
    • 지질공학
    • /
    • 제14권4호
    • /
    • pp.443-450
    • /
    • 2004
  • 이 연구는 제3기 퇴적암과 화산암이 분포하는 지역의 자연사면에서 발생하는 토석류 산사태를 예측하고자 로지스틱 회귀분석(logistic regression analysis)을 이용하여 예측모델을 개발한 것이다. 통계적 방법을 이용한 산사태 예측모델 개발을 위해 산사태 자료는 경북 포항지역에서 1998년 발생한 산사태를 대상으로 수집하였다. 로지스틱 회귀분석의 기본 특성을 고려하여 현장조사 및 실내토질시험은 산사태 발생지점 전체와 임의로 선택한 미발생 지점을 대상으로 실시하였다. 산사태 발생에 영향을 미치는 인자는 로지스틱 회귀분석을 실시하여 최종적으로 6개 영향인자를 선정하였다. 이들 6개 인자는 지형요소 2개와 지질요소 4개로 구성되어 있다. 개발된 모델은 신뢰성 검증을 수행한 결과 $90\%$ 이상의 예측률을 확보한 것으로 나타났다. 이 모델을 바탕으로 기존에 제시된 변성암 및 화강암 분포지에서의 산사태 예측모델과 함께 지질특성을 고려한 산사태 발생의 가능성을 확률적${\cdot}$정량적으로 예측할 수 있게 되었다.