• Title/Summary/Keyword: Logic Rules

Search Result 482, Processing Time 0.026 seconds

Fuzzy Logic Control With Predictive Neural Network

  • Jung, Sung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.285-289
    • /
    • 1996
  • Fuzzy logic controllers have been shown better performance than conventional ones especially in highly nonlinear plants. These results are caused by the nonlinear fuzzy rules were not sufficient to cope with significant uncertainty of the plants and environment. Moreover, it is hard to make fuzzy rules consistent and complete. In this paper, we employed a predictive neural network to enhance the nonlinear inference capability. The predictive neural network generates predictive outputs of a controlled plant using the current and past outputs and current inputs. These predictive outputs are used in terms of fuzzy rules in fuzzy inferencing. From experiments, we found that the predictive term of fuzzy rules enhanced the inference capability of the controller. This predictive neural network can also help the controller cope with uncertainty of plants or environment by on-line learning.

  • PDF

A fuzzy dynamic learning controller for chemical process control

  • Song, Jeong-Jun;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1950-1955
    • /
    • 1991
  • A fuzzy dynamic learning controller is proposed and applied to control of time delayed, non-linear and unstable chemical processes. The proposed fuzzy dynamic learning controller can self-adjust its fuzzy control rules using the external dynamic information from the process during on-line control and it can create th,, new fuzzy control rules autonomously using its learning capability from past control trends. The proposed controller shows better performance than the conventional fuzzy logic controller and the fuzzy self organizing controller.

  • PDF

Fuzzy Logic Control for a Simplified Trawl System (간략화된 트롤 시스템의 퍼지제어)

  • 이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1994
  • This paper describes the model of a simplified trawl system and a control method by using fuzzy algorithm in controlling the depth of trawl gear. Fuzzy logic control rules are sets of linguistic expression that are used by an experienced performer in real operation. For real time processing of the control rules, the look-up tables are used. Computer simulation results indicate that the proposed fuzzy controller shows fast response with minimum steady-state error and robustness properties to the simulated disturbance.

  • PDF

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Fuzzy Logic Based Collision Avoidance for UAVs (퍼지로직을 이용한 무인항공기의 충돌 회피)

  • 장대수;김종성;조신제;탁민제;구훤준
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.55-62
    • /
    • 2006
  • This thesis describes collision avoidance using fuzzy logic based on "Right of way" rules of ICAO and FAA and pilot's experiences for Unmanned Aerial Vehicle(UAV). To apply the rules, we designed fuzzy logic based collision avoidance system. And we also designed decision logic for enable condition of collision avoidance system. Decision logic have three kinds of core key, i.e. Relative Range, Time of CPA(Closest Point of Approach) and Distance at CPA. Application of decision logic made a possible to avoid NMAC(Near Mid-Air Collision) and it has been verified through several simulations. To conclude, we proposed the method to carry out "See and Avoid" ability on UAVs, which is capability to mingle with manned aircraft in civil airspace.

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

Design of fuzzy logic controller based on conflict-inconsistent rules

  • Bien, Zeungnam;Yu, Wansik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.30-35
    • /
    • 1992
  • Conflicting or inconsistent rules sometimes help us to represent the control actions of an expert more freely. Also, uncertainties about the control actions of the expert may render rules with conclusions whore membership functions have different width in their shapes. Conventional inference methods for FLC may not effectively handle such inconsistencies and/or rules containing such conclusions. In this paper, an effective inference method dealing with such If-Then rules is proposed.

  • PDF

An Integrated Methodology of Knowledge-based Rules with Fuzzy Logic for Material Handling Equipment Selection (전문가 지식 및 퍼지 이론을 연계한 물류설비 선정 방안에 관한 연구)

  • Cho Chi-Woon
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.57-73
    • /
    • 2006
  • This paper describes a methodology for automating the material handling equipment (MHE) evaluation and selection processes by combining knowledge-based rules and fuzzy multi-criteria decision making approach. The methodology is proposed to solve the MHE selection problems under fuzzy environment. At the primary stage, the most appropriate MHE type among the alternatives for each material flow link is searched. Knowledge-based rules are employed to retrieve the alternatives for each material flow link. To consider and compare the alternatives, multiple design factors are considered. These factors include both quantitative and qualitative measures. The qualitative measures are converted to numerical measures using fuzzy logic. The concept of fuzzy logic is applied to evaluation matrices used for the selection of the most suitable MHE through a fuzzy linguistic approach. Thus, this paper demonstrates the potential applicability of fuzzy theory in the MHE applications and provides a systemic guidance in the decision-making process.

  • PDF

Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm (유전자 알고즘을 이용한 자동차 주행 제어기의 최적화)

  • Kim Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.212-219
    • /
    • 2006
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Context-Awareness Healthcare for Disease Reasoning Based on Fuzzy Logic

  • Lee, Byung-Kwan;Jeong, Eun-Hee;Lee, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2016
  • This paper proposes Context-Awareness Healthcare for Disease Reasoning based on Fuzzy Logic. It consists of a Fuzzy-based Context-Awareness Module (FCAM) and a Fuzzy-based Disease Reasoning Module (FDRM). The FCAM computes a Correlation coefficient and Support between a Condition attribute and a Decision attribute and generates Fuzzy rules by using just the Condition attribute whose Correlation coefficient and Support are high. According to the result of accuracy experiment using a SIPINA mining tool, those generated by Fuzzy Rule based on Correlation coefficient and Support (FRCS) and Improved C4.5 are 0.84 and 0.81 each average. That is, compared to the Improved C4.5, the FRCS reduces the number of generated rules, and improves the accuracy of rules. In addition, the FDRM can not only reason a patient’s disease accurately by using the generated Fuzzy Rules and the patient disease information but also prevent a patient’s disease beforehand.