Fuzzy Logic Control With Predictive Neural Network

Sung Hoon Jung
School of Information and Computer Engineering, Hansung Univ.
389 SamsunDong-2-Ga, SungBook-Gu, Seoul, 136-792, Korea

Tel: 02-760-4344
Email: shjung@ice.hansung.ac.kr

Abstract

Fuzzy logic controllers have been shown better per-
formance than conventional ones especially in highly
ponlinear plants. These results are caused by the
nonlinear inference capability of the controllers with
nonlinear fuzzy rules. In some applications, how-
ever, the fuzzy rules were not sufficient to cope with
significant uncertainty of the plants and environ-
ment. Moreover, it is hard to make fuzzy rules con-
sistent and complete. In this paper, we employed a
predictive neural network to enhance the nonlinear
inference capability. The predictive neural network
generates predictive outputs of a controlled plant
using the current and past outputs and current in-
puts. These predictive outputs are used in terms
of fuzzy rules in fuzzy inferencing. From experi-
ments, we found that the predictive term of fuzzy
rules enhanced the inference capability of the con-
troller. This predictive neural network can also help
the controller cope with uncertainty of plants or en-
vironment by on-line learning.

1 Introduction

Fuzzy logic control (FLC) methods have been widely
employed to control highly nonlinear plants from
the late 1980s [1, 2, 3]. This is because the per-
formance of FLC methods is superior to that of
conventional control methods especially in highly
nonlinear plants. Although FLC shows good per-
formance, some problems still remain. One of the
problems is that the static fuzzy rules are insuf-

ficient to cope with significant uncertainty of the
plants and environment. Moreover, it is very hard to
make fuzzy rules without inconsistency and incom-
pletion. To solve these problems, some approaches—
self-organizing fuzzy control, neural-network-based
fuzzy logic control, and so on—were introduced [4,
5, 6, 7, 8]. Most self-organizing fuzzy control meth-
ods automatically modify their fuzzy rules using
adaptation machines. With a performance metric—
often an expert system or simply an algorithm—,
the adaptation machines change the fuzzy rules for
adapting uncertain environment. In neural-network-
based fuzzy logic control, fuzzy rules are represented
by the weights of connections and artificial neurons
of a neural network. This makes it possible for the
fuzzy logic controller to automatically acquire and
modify fugzy rules.

This paper introduces a fuzzy logic control scheme
with a predictive neural network. In this scheme, a
neural network is employed to predict the outputs of
a controlled plant. The predictive outputs of a plant
are used in terms of fuzzy rules. Thus, the fuzzy
rules consist of three terms—errors, change errors,
and predictive errors. If the predictive neural net-
work is well trained, the term of predictive errors in
fuzzy rule set will greatly enhance the performance
of a fuzzy logic controller. Moreover, on-line learn-
ing of the neural network enables the fuzzy logic
controller to have adaptability for the uncertainty
and the change of environment. One of the main
advantages of our control scheme is that our control
scheme can be easily incorporated with an existing
fuzzy logic controller without large modification.

We measured the performance of our control
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scheme with a DC servo-motor system. Experimen-
tal results show that the predictive term of fuzzy
rules enhanced the performance of a fuzzy logic con-
troller.

2 Proposed Fuzzy Logic Con-
trol Scheme

Figure 1 shows proposed fuzzy logic control scheme.
As you can see in figure 1, the proposed scheme is
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Figure 1: Control Structure of Our Control System

composed of three modules—a fuzzy logic controller,
a controlled plant, and a predictive neural network.
Excepting the predictive neural network, it is a nor-
mal fuzzy logic control structure. We add a neural
network to the normal structure for prediction out-
puts of the plant with plant inputs u(t), plant out-
puts y(t), and delayed plant outputs y(t—At). With
these three inputs, the neural network estimates the
predictive outputs of the plant. These predictive
outputs y(t + At), in other words outputs of neu-
ral network, are employed to measure predictive er-
ror terms with reference inputs r(t). The predic-
tive error terms e(t + At) are used in terms of fuzzy
rules. If the predictive neural network is sufficiently
trained in operating ranges of the plant, thus, the
predictive outputs are nearly equal to real outputs
in next time, then the predictive error terms will
greatly contribute to enhancing the performance of
the fuzzy logic controller. These predictive terms of
fuzzy rules will considerably reduce the effect caused
by the change of environment and parameters of con-
troller itself without human intervention. In other

words, adaptability of the controller will be greatly
enhanced by on-line learning.

On the other hand, if the neural network is insuf-
ficiently trained, the performance of the controller
may be degraded. This phenomenon can be dimin-
ished by adopting a degree of training of the neural
network in the process of inference. Assume that
we use Mamdani’s inference method. Consider a
fuzzy rule : If e(t) is PB, ce(t) is PS, and pe(t) is
NS then u(t) is NS where e(t), ce(t), pe(t), u(t) are
an error, a change of error, a predictive error, and
an output at time ¢, respectively; where PB, PS,
and NS are positive big, positive small, and nega-
tive small, respectively; where the predictive error
is pe(t) = r(t) — y(t + At). In the process of fuzzy
logic control, the relation R() is given as:

R(e(t), ce(t), pe(t),u(t)) = mazicicymin
{Ei(e(t)), CEi(ce(t)), PE(pe(t)), Ui(u(t))X1)

where R() is a fuzzy relation of each ele-
ment, N is the number of fuzzy rules, and
Ei(),CE\(), PE,(), Ui() are membership functions of
i'th fuzzy rule, respectively.
To solve the above phenomenon, we first define the
degree of training and next a degree of rule effect.
Definition 1: Degree of training
Let TSSE(t) be a total sum square error at time
t. Then the degree of training dg-t(t) at time t is
defined as:

1
49-4t) = T T5580) < 5

(2)

where 3 is a positive real constant value that con-
troller designers select.
The B factor indicates the degree of effect of the
predictive error term as explained later.
Definition 2: Degree of rule effect
The degree of rule effect dg_e(t) is given as:

1
1+ TSSE(t)x S (3)

dge(t)=1—dgt(t)=1

With the definitions we can modify the predictive
term P E;(pe(t)) as follows.

PE;(pe(t)) = maz{PE(pe(t)), dge(t)}  (4)
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Finally, the equation 1 is modified as:

R(e(t), ce(t), pe(t), u(t)) = maz,<icyman
{Ei(e(t)), CEi(ce(t)), PE(pe(t)), Us(u(t))X5)

If the predictive neural network is insufficiently
trained, then TSSE(t) has large value. This makes
the degree of training get near to zero and the de-
gree of rule effect get close to one. Let the TSSE(t)
J[for simple explanation, be positive infinite, then the
dg-t(t) is equal to zero and the dg.e(t) one. Fi-
nally, the value of new predictive term PE}(pe(t))
becomes one and the PE?(pe(t)) term will be can-
celed. This result indicates that the eflect of pre-
dictive term is vanished. If the neural network is
perfectly trained, then TSSE(t) and dg_e(t) be-
comes zero, consequently, the PE!(pe(t)) becomes
PE;(pe(t)). The higher the degree of training, the
larger the effect of predictive term. If a controlled
plant is highly nonlinear, then a controller designer
would better select the large value of 8. This makes
the effect of predictive term reduce. If 8 is infinite,
the produce output of proposed controller is equal to
that of the normal fuzzy logic controller. A proper
value of G selected by a designer will enhance the
performance of the controller. This type of solution
is also adequate to on-line learning scheme because
the degree of training dynamically affects the out-
puts of inference.

In the prediction, the At is another important fac-
tor for improving the performance. It can be selected
intuitively. If a plant has small inertia, then the At
may be small. Otherwise, the At should be large.
More researches about decision of At are necessary.

3 Control System Setup

A DC servo-motor system is employed to experiment
our control scheme. The transfer function of the
system is as follows.

6(s)

Va(s)

G(s) =
o (©
S[(Ra + Las)(Jms + Bm) + Ko Ky
where v,(t) = L71{V,(s)} is the applied motor input
voltage and 6(t) = L '{O(s)} is the angle of the

motor shaft.

Table 1: DC servo-motor spec.

R, 398

L, |52TmH

K, | 0.215V - sec

tm | 14 msec
Kn|22kgf-em/A

Jm | 0.0017 kgf - cm - sec?
B,, | 0.121 kgf - em - sec

By substituting each parameter values with those
in table 1 and letting Y'(s) = ©(s), U(s) = V,(s), it

can be rewritten as follows.

-5

2.2 )
5(8.959 x 10652 + 7.268 x 10~3s + 0.9449})

This plant is simulated by 4’th order Runge-Kutta
method with 1ms time step.

We used a back-propagation neural network with
2-30-1 network structure. The learning rate 5 is 0.02.
For training, 1000 training patterns are gathered be-
fore starting real control.

4 Experimental Results

In this paper, we experiment only two cases, i.e.,
is infinite and B is zero. First we show the train-
ing patterns and the predictive output of the neural
network. Next, the two experimental results follow.
Figure 2 shows initial training patterns of neural net-
work. After 5,000 training iterations, the predictive
output of neural network is shown in figure 3.

Figure 4 and 5 show two experimental results in
case that G is infinite and zero, respectively.

As you can see in figure 3, although the train-
ing of neural network is not sufficient, the perfor-
mance of the controller as shown in figure 5 is con-
siderably improved. After 500 sec, the result shows
worse performance than the case of infinite 8. This
is caused by the insufficient training near the set
point. This can be reduced by taking appropriate
B with on-line training fashion. Instead of adopting
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Figure 2: Initial Training Patterns

Figure 4: Experimental result with 8 =
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Figure 3: Prediction for Training Patterns

Figure 5: Experimental result with 8 = 0.0



TSSE(t), a training error about a pattern mostly
near the set point can be used as a degree of training.
This method will reduce the performance degrada-
tion where the set points insufficiently trained

We used 5 time steps, namely 5ms as At. That is,
neural network generates a predictive output y(t +
5 X t,) where #, is a time step. If this increase, then
the rising time will be reduced. The increasing of At,
however, may affect in the direction of disadvantage.
Thus it should be changed carefully.

5 Conclusion

This paper introduces a new fusing method of a neu-
ral network and a fuzzy logic controller. In contrast
to previous works, this can be shown as a loosely
coupled method. Thus, proposed control scheme
can be more easily incorporated into existing nor-
mal fuzzy logic controllers than previous schemes.
The adopting of degree of training and degree of rule
effect can also be effectively used without consid-
ering a disadvantage caused by insufficient training
of the neural network. Experimental results with a
DC-servo motor system show that proposed control
scheme enhances the performance of the controller.
More extensive experiments and more researches for
systematic decision of 8 and At are needed.
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