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A Fuzzy Dynamic Learning Controller for Chemical Process Control
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ABSTRACT : A fuzzy dynamic learning controller is proposed and applied to control of time
delayed, non—linear and unstable chemical processes. The proposed fuzzy dynamic learning
controller can self-adjust its fuzzy control rules using the external dynamic information from the
process during on-line control and it can create the new fuzzy control rules autonomously using
its learning capability from past control trends. The proposed controller shows better performance
than the conventional fuzzy logic controller and the fuzzy self organizing controller.
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1. Introduction

Conventional  fuzzy logic  controllers
enerally require a certain reasonable set of
uzzy control rules that integrate heuristics
and intuition of human operators.[1,3]
However in some cases, especially in the case
of a system that has very complicated
dynamic characteristics, we would encounter
significant difficulties to find the best fitted or
at least reasonable fuzzy rules to control such
a system. In these cases the initial fuzzy rules
we had set at the initial control stage may not
be suitable to control those processes.

A fuzzy controller which can dynamically
learn its control environment and create its
fuzzy control rules based on the external
dynamic information from the process is
called a fuzzy dynamic learning controller
(henceforth FDLC). This work.deals with the
development of a new fuzzy inference
algorithm based FDLC which can self—adjust
its fuzzy control rules using the information
from the process during on-Jine control and
create  the new fuzzy control rules
autonomously using its learning capability
from past control trends. The proposed
controller is applied to three chemical
processes: a process with a time delay; a
non—linear process; an open—loop unstable
process. It’s control performance is compared
with conventional fuzzy logic controller
(henceforth FLC) [1] and the fuzzy self
organizing controller {6] (henceforth FSOC).

2. Building Blocks of the Proposed Fuzzy
Dynamic Learning Controller

2-1. Querall Structure

The modularized configuration of the fuzzy
dynamic learning controller proposed in this
paper is shown in Fig. 1. The controller
consists of two phases: the basic control phase
and the fuzzy dynamic learning phase. The
error and change of error terms are generated
by comparing the process state with the
desired setpoint, and they are fed into
controller’s fuzzification block (block F). In
Fig. 1., GE, GCE, and GO are controller gain
terms that represent gains of error, change of

error, and control output respectively. The
basic control phase has a fuzzy control rule
base and a fuzzy inference module which takes
up the fuzzy set operation during control.
Defuzzified control command is produced from
the ccntroller (through DF, GO, and SUM
modules that are defuzzified, output gain
treatment and velocity form summation
blocks respectively) during every control
cycle. The functionality of FLC is similar to
these tasks of the basic control phase. The
dynamic learning module in the dynamic
learning phase updates fuzzy control rules or
creates new fuzzy control rules.

22, The basic contrel phose

Actually the basic control phase of the
fuzzy dynamic learning controller can be
thought as a simple FLC.[1,4,5,7] The main
design concept of this basic control phase is
the use of linguistic control rule which can be
expressed in various fuzzy operation forms
including linguistic conditional statement
(i.e., IF—premise, THEN—action rules). This
linguistic conditional statement can also be
described in a fuzzy implication with the
relation matrix Ry. The relation matrix Ry
can act as the fuzzy relations among the error
Ex which is generated using the deviation
between the process response and the desired
setpoint, the change of error Cy and the
control action Uy. The fuzzy implication can
be given in the cartesian product form

Rx = Ex x Cx x Uy (1)
The overall relation matrix R in a fuzzy
controller is calculated as tne union of n
individual relation matrices:

R = R.1U R_Q U ... u Rk Uu... u R“

n ,
=U Rx 2)

k=1

As shown in Egs. (1) and (2), the controller
output U can be inferred from the controller
inputs (error term E, error change term C)
and the control rule (relation matrix R) using
Zadeh’s composition rule of inference [9]:

U=(ExC)oR

For each time step, U can be presented as:
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U(kT) = (E(kT) x C(kT)) o R (3)
2-38. The Fuzzy Dynamic learning Phase
The fuzzy dynamic learning phase

interactively modifies the basic control phase
using newly developed fuzzy inference rule
and some pre—determined performance index
which can improve the control performance of
the controller. [6] This fuzzy dynamic
learning phase mainly consists of control
performance measure, modification of basic
control phase (rule learning and adaptation
phase), and the fuzzy inference module that
upgrades the fuzzy rule base.

2-3—1. Control Performance Measure

To determine the control performance of a
controller, we generally rely on the deviation
between the desired setpoint and the actual
process response as a rough indication. This
control performance measure plays a role as a
decision maker for modifying control action in
the fuzzy dynamic learning phase.

The performance index which can be used
as a "yardstick" for control performance of
the controller is composed as shown in Table
1. This table presents the amounts of
reinforcements on control action in the next
cycle. Of course there is not a formal rule for
making the control performance index; it can
be varied according to controller designer’s
strategy for performance improvement.

In Table 1., the controller performances are
inferred as the following linguistic conditional
statements:

If the ERROR is PSM then

if the Change of Error is NB or NM then
the deviation of response is NS

else

If the ERROR is PSM then

if the Change of Error is NSM then

the deviation of response is ZR.

These linguistic conditional statements can
be expressed in a more compact form using
fuzzified variables as:

If E(kT) = PSM then if C(kT) =
then DEV(kT) = NS

else

If E(kT) = PSM then if C(kT) =
then DEV(kT) = ZR

NB or NM

here, DEV(kT) is the deviation of the
process response from the desired setpoint i.e.,
the reinforcement of future control action.

NB, NM, NSM, NS, ZR, and PSM are
fuzzified variables of the deviation.

The fuzzy set operation in the control
performance measure uses Zadeh’s
compositional rule of inference same as the
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generation of the control output in the basic

_control phase.

2-3-2. Modification of the Basic Conirol
Phase

We can modify the action of the basic
control phase by: (1) Modification of the fuzzy
control rules, (2) Modification of controller’s
scaling factors (gain terms), or (3)
Simultaneous modification of the fuzzy
control rules and giin terms. Though the
second method would improve the control
performance of the controller, it requires a
well tuned initial control rules. The third
method would also improve the control
performance, but how we can adjust the two
factors at a time effectively still remains as a
problem to be solved. Therefore in this paper,
we focus on building a fuzzy dynamic learning
mechanism by modifying its fuzzy control
rules. The controller can modify its rules
based on the experience gained from
controlling the process.

Let’s assume that our process has the time
delay nT. That is, the control action at time
step (k—n)T has most contributed to the
process response at the present time step kT.
Thus for the present state of the process, the
controller output at (k-n)T is most
responsible and should be modified thiough
the dynamic learning phase.

So, the initial control rule of the controller
before processing the dynamic learning phase

E(kT-—nT) — C(kT-nT) ~— U(kT-nT)
This rule can be modified after processing in

the dynamic learning phase as follows:

E(kT-nT) —— C(kT-nT) — V(kT—nT)

where,
EkT-nT) = F{ekT-nT)},
ClkT-nT) = F{ c(kT-nT) }.
U(kT-nT) = F{ u(kT-nT
= actual control action to the
process at time step (kT--nT)
V(kT-T) = F{u(kT-nT)+ DEV(kT)}
= adjusted control action using
the performance index
DEV(kT) = the reinforcement of control
action at time step kT, which
is computed using the
performance index
U(kT) = F{u(kT) }
= the control action at current
time step kT
F{ } = Fuzzification

We can formulate these modification phase
with fuzzy implications as below:

E(kT) x C(kT) x U(kT)

R(KT) = (4)

ri(xT)



= E(kT—nT) x C(kT-nT) x U(kT-nT) (5)

rfter
(kT—T) x C(kT-nT) x V(kT-nT) (6)

where,

R(kT) = the relation matrix among control
actlon U kT), error E(kT), and change of
error C(kT) at current time step kT

Rf(kT) the relation matrix used for
computing “control action U(kT—nT) exerted
on the process at time step (kT-nT)

rHtT) =

replace the relation matrix RT(kT) after the
control rules are processed through the rule
modification phase.

2-3-8 The Fuzzy Rule Inference

The fuzzy dynamic learning controller can
generate the adequate control action using its
rule modification process described in section
2—3-2 so that the process state can follow the
desired setpoint. Using the relation matrices
defined in section 2-3-2, the modified
relation matrices of the controller which will
generate the current compensatmg control
output are actually calculated using the fuzzy
inference rule below [7]:

R(KT) now
=[ R(kT) but not RY(kT) } etse BTt (k1)

ie.,
R(kT), v

the relation matrix which must

- RaT)n kT (xT)JuRMET) ()
where,

R(kT) = The relation matrix at current
time step kT.

R(kT)new = The new modified relation

matrix in the fuzzy dynamic learning phase. A
new control action U{kT)new can be calculated
using this matrix through and exerted to the
process at current time step kT.

Using Eq. (7), the controller output at
current time step kT becomes U(kT)pew
rather than U(kT).

There can be several ways to modify the

relation matrix using R(kT), RJ‘(kT) and

R 1'(kT) We propose the inference logic of
the fuzzy dynamic learning controller as
follows:

R(kT—1T)new
= [ RY(kT) but not RY(kT) ] else RYT(kT)
ie.,

ri(kT)

new
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=h[R’f(kT) arf(xT)jurttar) (8

RT(kT) the relation matrix fired for
computing " control action U(kT-nT) which
exerted on the process at time step (kT-nT)

R(kT-nT)pew = the relation matrix which

should be replaced R*(kT)

The main idea of the proposed fuzzy
inference operation is that the controller has
an updating function of the past control rules
i.e., the fired control rules, by modifying those
relational matrices as in Eq. (8) thus the
controller can provide effective compensative
control action to the next control cycle. The
controller which has the fuzzy rule inference
mechanism as Eq. (8) shows better control
periormance than the controller of which the
inference mechanism based on Eq. (7). The
simulation results are discussed in the later
section. Even though the terms within the

bracket in Eq. (8) [ RT(KT) but not RT(kT) ]
looks like a null set, it is surely not a null set
in fuzzy set operations. The meaning of Eq.
(8) is that the controller can modify the fuzzy
control rule that was fired at time step
(kT—-nT), using the weighted sum of the
current process infurmation (i.e., through
performance index) and the control action
which was taken at time step (kT-nT). On
the other hand, when the controller actually
atiempts to compute the fuzzy set operations
using Eqgs. (7) or (8), the computing load to
the computer system in which the controller
algorithm is embedded increases very rapidly
as the total number of fired rules in a time
step and the desired accuracy increases. Thus
the computing l!oad in any fuzzy self
organizing controller or fuzzy dynamic
learning controller is a very important
problem that must be resolved. We adopt a
time—averaged and prioritized weighting
concept on fired rules so that the most
contributed rule within a time step is
modified primarily in the controller’s rule
relation system.

3. Implementation of the Fuzzy Dynamic
Learning Controller

8—1. Fuzzification and Quantization

The error and change of error that are used
as input terms in the fuzzy dynamic learning
controller are computed as follows:

error : Eg_kT) Ysp — Y(kT)

chan%e of error :

E(I]f](kT) (k(kl)l’I; )Y(kT)
where,

Ysp = desired setpoint of the process output



Y(kT) = actual process output at the time
step kT

The linguistic fuzzy  variables for
fuzzification of controller input terms (error
and change of errorg and output terms
(control action) are defined in the universe of
discourse [—1,1} in the order of Negative Big
NIZ?, Negative Medium (NM), Negative
mall Medium (NSM), Negative Small (NS),
Zero (ZR), Positive Small (PS), Positive
Small Medium (PSM), Positive Medium
$PM), and Positive Big (PB). These nine
uzzy linguistic variables are normalized in

the universe of discourse [-1 , 1] and
quantized as nine fuzzy subsets.
Each fuzzy subset has a bell shaped

membership function like:
# X ) =EXP ((-1/a"2)* (X-7))

where,

X = controller input variable (E , C

2a = half span of Bell shaped membership
function

§ = moving center (center of membership
function)

Since all the fuzzy variables are normalized
and quantized on the universe of discourse [—1
, 1], the parameter & has the constant value
0.125, 8 has the varying constants from —1 to
1 with an increment of 2a. These fuzzy
variables and their membership functions are
shown in Fig. 2. The maximum number of
fuzzy control rules that the controller can
possess is 81 because there exist nine fuzzy
variables and two controller inputs (E and C).

3—-2. Rule Base Structuring
The need for using the fvzzy dynamic

learning controller exists in certain processes
that have complex dynamic characteristies
which are very difficult to identify properly.
So in this paper, we assume that we cannot
know the dynamic behavior of the process
very well and consequently, the initial 19
fuzzy control rule sets in the controller’s rule
base are selected teatatively as shown in
Table 2. The components of this initial rule
base are continually updated or newly
generated in the dynamic learning phase
during on—line control cycles. We set the
initial rule base for the FSOC same as Table
2.

The rule base of the FLC which would be
compared with the proposed fuzzy dynamic
learning controller consists of 25 fuzzy control
rule elements that have been extracted from
the typical response of a second order process
to step changes of the process setpoints. Table
3. shows the rule table of the FLC.

3-3. Inference Logic and Defuzzification

We have tested two methods of computing
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compositional rule of inference for generating
‘the control action:
Zadeh’s method:

OR(ga,pb) = max ( fa , fb )

AND(pa,pp) = min (pa, o
Lukasiewicz’s method:

OR(ptayin)  =min (1, pa+ )

AND(gta,pi) =max (0 ,pa+pur—1)

We did not see significant differences in
control performance between those two fuzzy
operation methods applied to the proposed
FDLC, the FSOC, and the FLC respectively.
Thus we adopted Zadeh’s AND and
Lukasiewicz’s OR operation for computing
compositional rule of inference [2].

The singleton (crisp) value of the control

action UfrT) which is actually fed into the
process can be computed from the fuzzy value
of control action U, using the center of gravity
method [5].

4. Fxperimental Process Models

Three example systems have been simulated
to demonstrate the control performance of the
fuzzy dyramic learning controller proposed in
this work. The first example is a second order
plus dead time process (henceforth SOPDT
process) within which our desired setpoints
are varying in a cyclic manner. The second
example system taken from Uppal et. al. {8] is
a CSTR in which first order exothermic
irreversible reaction is taking place. This
process is highly non—linear. Finally, the third
system is a first order open loop unstable
process which has a pole at +5. Control
performances of the proposed fuzzy dynamic
learning controller (FDLC) for the three
systems are compared with those of the FLC
and FSGC. The first example is a servo
problem; the remaining two are
servo/regulatory problems of which the
controller’s task is both rejecting the external
unmeasurable noisy disturbance and tracking
the setpoint at the same time. The process
models are as follows:

Ezample 1 : Second Order Plus Dead Time
Process

y' =28y ~4y+ 4u(k-2)

where, y = process output, u = control
action

Ezample 2 : Open—loop Unstable Process

y=05u+53dy .

where, y = process output, u = control
action

Ezample 8 : Non—linear Process : ezo. irr.
rzn. in CSTR

(] =[0 ]+ (5] + [0 [&]




] =

—x+ Dagl—xlg exp XZ/21+§XQ/VB

x2+ BDa(1—x3) exp[xa/(1+(x2/v))] —
ﬁ(xz—xzco)
Here, x; and x; are the dimensionless

composition and temperature respectively;
Da, B, v, f§, and x; are the standard

co
dimensionless parameters; d; and d; are the
dimensionless feed temperature and feed
composition fluctuations, respectively. The
control variable u is the dimensionless
temperature of the cooling jacket unit. We
select the dimensionless parameters to be:
De=0072,B=8,(=03,v=20, and

x2 =0. The proposed value of x{Pis 0.5, x§P
co
is 3.03 [8).

5. Simulation Results

5-1. Erzample 1: Performance Improvement
with _the Proposed Fuzzy Dynamic Learning
Controller

We can get the improved control
performance with the proposed fuzzy dynamic
learning controller for controlling the SOPDT
process as shown in Fig. 3. The control
performances of the FLC and the FSOC are
also shown in the same figure. In this system
we change the setpoints in ‘a sequential
manner such as 0.0 —— 0.5 —— 0.0 and
the one control cycle is denoted as one RUN.
The control task of the controllers is to track
the changing setpoint.

For the case of the proposed controller, the
initial control performance (denoted as 1
RUN) is rather unfavorable from the view of
oscillation and overshoot but as the RUN
sequences are repeated (i.e., as the time
proceeded) the control performance gradually
improves. The controller starts the control
task using only 19 initial arbitrary fuzzy
control rules among maximum 81 probable
rules, the controller can create the missing
rules from dynamic information of the
process, and continually improve it during
on-line control. The FSOC also shows
favorable performance as time proceeds, the
overshoot is rather bigger than that of the
proposed fuzzy dynamic learning controller.

The FLC continually produces unfavorable
process response even after the RUN
sequences are repeated. This is mainly because
the fuzzy control rule base of the FLC are
made from the simple second order process
model and so the initial fuzzy rules are
inadequate for controlling the SOPDT
process, and secondly because some self
adaptive mechanism does not exist that
modifies controller’s rule base accordingly as
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the controller’s external environment changes.
(So the initial rules could not be modified at
all.)

5-2. Ezample 2: Open—loop Unstable Process

An open—loop unstable process that has a
pole at +5 is controlled by the proposed fuzzy
dynamic learning controller (Fig. 4.), FSOC
(Fig. 5.), and FLC (Fig. 6.). The control task
of this system is to regulate the process at the
desired  setpoint against the external
unmeasurable noisy disturbances changing in
a step manner and at the same time, to track
the varying process setpoint that varies every
100 cycles interval.

Control performance of the proposed
controller is very satisfactory even though
some overshoots appear when large external
step disturbance is exerted on the process (at
the time near 700 cycle). During the control
phase, the controller autonomously set its own
fuzzy control rule wusing the controller’s
dynamic learning mechanism. The FSOC
made continuous oscillation over the control
cycles, which is not desirable in controlling
unstable processes.

The FLC in this case is characterized by
severe oscillations and frequent on-off control
actions; it is natural because the fuzzy control
rules of the FLC are based on a simple second
order process model.

5-8. Ezample 8: Non—Linear Process

Figs. 7. to 9. respectively show the
performance of the FDLC, FSOC and FLC
controlling a CSTR within which a first order
irreversible exothermic reaction takes place.
The setpoint is 0.5 and the desired operating
range is 0.5 from this operating point.

In spite of the severe non—linearity of the
process the proposed controller shows good
control performance over the control range.
The FSOC shows worse performance than the

proposed controller near the optimum
operating point 0.5. (severe oscillation
occurred) and reveals an unfavorable off-set

near the setpoint 0.9 which is 0.4 higher than
the operating point. The FLC shows similar
control performance in the case of the
unstable process; it causes very frequent
on—off control actions over the control range.

6. Conclusions

We propose a fuzzy dynamic learning
controller with an improved dynamic learning
inference  mechanism  for  control  of
complicated processes for which we can set up
neither the reasonable initial fuzzy control
rules extracted from operational experience
nor mathematical dynamic model. The
proposed controller has been tested with
processes that have time delays, instability, or



non—linearity and its control performance has
been compared with those of the FLC and
FSOC.

With the new dynamic learning mechanism
using the proposed fuzzy inference operation,
the controller can learn and create its own
fuzzy control rules effectively using the past
control trends and dynamic information from
the process. And the controller can modify the
control rules adequately by self-adapting to
the varying external conditions such as
frequently varying process setpoints or severe
external unmeasurable disturbances to the
process to be controlled. The distinct
advantage of the proposed controller is that in
spite of the complexity of the process and the
uncertainty of process models (blackbox
model), the controller provides robust control
performance over the control cycles. Many
simulation experiments indicate that the
proposed controller can provide better control
performance than the other fuzzy controllers
compared in this study.
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