• 제목/요약/키워드: Log data

검색결과 2,131건 처리시간 0.028초

효과적인 웹 사용자의 패턴 분석을 위한 하둡 시스템의 웹 로그 분석 방안 (A Method for Analyzing Web Log of the Hadoop System for Analyzing a Effective Pattern of Web Users)

  • 이병주;권정숙;고기철;최용락
    • 한국IT서비스학회지
    • /
    • 제13권4호
    • /
    • pp.231-243
    • /
    • 2014
  • Of the various data that corporations can approach, web log data are important data that correspond to data analysis to implement customer relations management strategies. As the volume of approachable data has increased exponentially due to the Internet and popularization of smart phone, web log data have also increased a lot. As a result, it has become difficult to expand storage to process large amounts of web logs data flexibly and extremely hard to implement a system capable of categorizing, analyzing, and processing web log data accumulated over a long period of time. This study thus set out to apply Hadoop, a distributed processing system that had recently come into the spotlight for its capacity of processing large volumes of data, and propose an efficient analysis plan for large amounts of web log. The study checked the forms of web log by the effective web log collection methods and the web log levels by using Hadoop and proposed analysis techniques and Hadoop organization designs accordingly. The present study resolved the difficulty with processing large amounts of web log data and proposed the activity patterns of users through web log analysis, thus demonstrating its advantages as a new means of marketing.

Utilization of Log Data Reflecting User Information-Seeking Behavior in the Digital Library

  • Lee, Seonhee;Lee, Jee Yeon
    • Journal of Information Science Theory and Practice
    • /
    • 제10권1호
    • /
    • pp.73-88
    • /
    • 2022
  • This exploratory study aims to understand the potential of log data analysis and expand its utilization in user research methods. Transaction log data are records of electronic interactions that have occurred between users and web services, reflecting information-seeking behavior in the context of digital libraries where users interact with the service system during the search for information. Two ways were used to analyze South Korea's National Digital Science Library (NDSL) log data for three days, including 150,000 data: a log pattern analysis, and log context analysis using statistics. First, a pattern-based analysis examined the general paths of usage by logged and unlogged users. The correlation between paths was analyzed through a χ2 analysis. The subsequent log context analysis assessed 30 identified users' data using basic statistics and visualized the individual user information-seeking behavior while accessing NDSL. The visualization shows included 30 diverse paths for 30 cases. Log analysis provided insight into general and individual user information-seeking behavior. The results of log analysis can enhance the understanding of user actions. Therefore, it can be utilized as the basic data to improve the design of services and systems in the digital library to meet users' needs.

An Efficient Log Data Processing Architecture for Internet Cloud Environments

  • Kim, Julie;Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제8권1호
    • /
    • pp.33-41
    • /
    • 2016
  • Big data management is becoming an increasingly important issue in both industry and academia of information science community today. One of the important categories of big data generated from software systems is log data. Log data is generally used for better services in various service providers and can also be used to improve system reliability. In this paper, we propose a novel big data management architecture specialized for log data. The proposed architecture provides a scalable log management system that consists of client and server side modules for efficient handling of log data. To support large and simultaneous log data from multiple clients, we adopt the Hadoop infrastructure in the server-side file system for storing and managing log data efficiently. We implement the proposed architecture to support various client environments and validate the efficiency through measurement studies. The results show that the proposed architecture performs better than the existing logging architecture by 42.8% on average. All components of the proposed architecture are implemented based on open source software and the developed prototypes are now publicly available.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

원천 시스템 환경을 고려한 데이터 추출 방식의 비교 및 Index DB를 이용한 추출 방식의 구현 -ㅅ 은행 사례를 중심으로- (A Comparison of Data Extraction Techniques and an Implementation of Data Extraction Technique using Index DB -S Bank Case-)

  • 김기운
    • 경영과학
    • /
    • 제20권2호
    • /
    • pp.1-16
    • /
    • 2003
  • Previous research on data extraction and integration for data warehousing has concentrated mainly on the relational DBMS or partly on the object-oriented DBMS. Mostly, it describes issues related with the change data (deltas) capture and the incremental update by using the triggering technique of active database systems. But, little attention has been paid to data extraction approaches from other types of source systems like hierarchical DBMS, etc. and from source systems without triggering capability. This paper argues, from the practical point of view, that we need to consider not only the types of information sources and capabilities of ETT tools but also other factors of source systems such as operational characteristics (i.e., whether they support DBMS log, user log or no log, timestamp), and DBMS characteristics (i.e., whether they have the triggering capability or not, etc), in order to find out appropriate data extraction techniques that could be applied to different source systems. Having applied several different data extraction techniques (e.g., DBMS log, user log, triggering, timestamp-based extraction, file comparison) to S bank's source systems (e.g., IMS, DB2, ORACLE, and SAM file), we discovered that data extraction techniques available in a commercial ETT tool do not completely support data extraction from the DBMS log of IMS system. For such IMS systems, a new date extraction technique is proposed which first creates Index database and then updates the data warehouse using the Index database. We illustrates this technique using an example application.

아파치 엘라스틱서치 기반 로그스태시를 이용한 보안로그 분석시스템 (A Security Log Analysis System using Logstash based on Apache Elasticsearch)

  • 이봉환;양동민
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.382-389
    • /
    • 2018
  • 최근 사이버 공격은 다양한 정보시스템에 심각한 피해를 주고 있다. 로그 데이터 분석은 이러한 문제를 해결하는 하나의 방법이다. 보안 로그 분석시스템은 로그 데이터 정보를 수집, 저장, 분석하여 보안 위험에 적절히 대처할 수 있게 한다. 본 논문에서는 보안 로그 분석을 위하여 분산 검색 엔진으로 사용되고 있는 Elasticsearch와 다양한 종류의 로그 데이터를 수집하고 가공 및 처리할 수 있게 하는 Logstash를 사용하여 보안 로그 분석시스템을 설계하고 구현하였다. 분석한 로그 데이터는 Kibana를 이용하여 로그 통계 및 검색 리포트를 생성하고 그 결과를 시각화할 수 있게 하였다. 구현한 검색엔진 기반 보안 로그 분석시스템과 기존의 Flume 로그 수집기, Flume HDFS 싱크 및 HBase를 사용하여 구현한 보안 로그 분석시스템의 성능을 비교 분석하였다. 실험 결과 Elasticsearch 기반의 로그 분석시스템을 사용할 경우 하둡 기반의 로그 분석시스템에 비하여 데이터베이스 쿼리 처리시간 및 로그 데이터 분석 시간을 현저하게 줄일 수 있음을 보였다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

Compositional data analysis by the square-root transformation: Application to NBA USG% data

  • Jeseok Lee;Byungwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권3호
    • /
    • pp.349-363
    • /
    • 2024
  • Compositional data refers to data where the sum of the values of the components is a constant, hence the sample space is defined as a simplex making it impossible to apply statistical methods developed in the usual Euclidean vector space. A natural approach to overcome this restriction is to consider an appropriate transformation which moves the sample space onto the Euclidean space, and log-ratio typed transformations, such as the additive log-ratio (ALR), the centered log-ratio (CLR) and the isometric log-ratio (ILR) transformations, have been mostly conducted. However, in scenarios with sparsity, where certain components take on exact zero values, these log-ratio type transformations may not be effective. In this work, we mainly suggest an alternative transformation, that is the square-root transformation which moves the original sample space onto the directional space. We compare the square-root transformation with the log-ratio typed transformation by the simulation study and the real data example. In the real data example, we applied both types of transformations to the USG% data obtained from NBA, and used a density based clustering method, DBSCAN (density-based spatial clustering of applications with noise), to show the result.

클라우드 환경에서의 효율적인 빅 데이터 처리를 위한 로그 데이터 수집 아키텍처 (An Efficient Log Data Management Architecture for Big Data Processing in Cloud Computing Environments)

  • 김주리;반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.1-7
    • /
    • 2013
  • 최근 빅 데이터 관리가 정보기술 분야의 학계와 업계에서 중요한 이슈로 떠오르고 있다. 빅 데이터 중 소프트웨어 시스템에서 필연적으로 생성되는 대표적인 유형 중 하나가 로그 데이터이다. 로그 데이터는 서비스 제공자가 더 나은 서비스를 제공하고 소프트웨어의 품질을 향상시키기 위해 필요하다. 따라서 적절한 방법으로 로그 데이터를 수집하고 이를 분석할 수 있는 인프라 환경을 구축하는 것은 매우 중요하다. 본 논문은 로그 데이터에 특화된 새로운 빅 데이터 관리 기법을 제안한다. 제안하는 기법은 다수의 클라이언트 어플리케이션에서 생성되는 로그 데이터를 네트워크를 통해 전송하고 이를 실시간으로 저장한 후 분석할 수 있는 아키텍처를 제공한다. 해당 아키텍처는 서버-클라이언트 환경에서 로그의 비동기적인 처리를 지원하여 원격 로깅임에도 불구하고 데이터 처리의 병목 현상이나 클라이언트의 성능 저하를 발생시키지 않는다. 제안하는 기법을 실제 시스템에 구현하고 실측한 결과 확장성 있는 로그 데이터 관리가 이루어짐을 확인하였다. 특히, 본 논문에서는 모든 구현을 오픈소스 소프트웨어에 기반하여 수행했으며, 개발 프로토타입 또한 오픈소스 소프트웨어 형태로 공개하여 누구나 사용할 수 있도록 하였다.

A Log Management Service Model based on AOP for Efficient Development of Android Applications

  • Choi, Yun-seok
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.39-45
    • /
    • 2016
  • In this paper, we propose a log management service model for efficient developments of android applications. The proposed model consists of two major parts which are the log collector and the log manager service. The log collector can capture the log information of a target application without modifications, because the collector is composed by aspect-oriented programming. The collected logs are transformed to chunk of data, and the chunk of data is sent to the log management service. The log management service is an android service component and an independent application in another process. So, the log management service can reduce the workload of logging in the target application. Through a case study, we show that the proposed log management service model can reduce the log processing time compared to other models without modifications of a target application.