• Title/Summary/Keyword: Locomotion patterns

Search Result 35, Processing Time 0.026 seconds

Pattern Analyses for Semi-Looper Type Robots with Multiple Links

  • Watanabe, Keigo;Liu, Guang Lei;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.963-968
    • /
    • 2005
  • For worm robots applied to pipe inspection and colonoscopy, earthworm-like robots that have a locomotion pattern in backward wave or green caterpillar-like robots that have a locomotion pattern in forward wave have been studied widely. Note however that a method using a single and fixed locomotion pattern is not desirable in the sense of mobility cost, if there are various changes in pipe diameter. In this paper, locomotion patterns are considered for a semi-looper-like robot, which adopts a locomotion pattern of green caterpillars as the basic motion and sometimes can realize a locomotion pattern of looper, whose motion approximately consists of two rhythms or relatively low rhythm.

  • PDF

Swimming pattern analysis of a Diving beetle for Aquatic Locomotion Applying to Articulated Underwater Robots (다관절 유영로봇에 적용하기 위한 물방개의 유영패턴 분석)

  • Kim, Hee-Joong;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.259-266
    • /
    • 2012
  • In these days, researches about underwater robots have been actively in progress for the purposes of ocean detection and resource exploration. Unlike general underwater robots such as ROV(Remotely Operated Vehicle) and AUV(Autonomous Underwater Vehicle) which have propellers, an articulated underwater robot which is called Crabster has been being developed in KORDI(Korea Ocean Research & Development Institute) with many cooperation organizations since 2010. The robot is expected to be able to walk and swim under the sea with its legs. Among many researching fields of this project, we are focusing on a swimming section. In order to find effective swimming locomotion for the robot, we approached this subject in terms of Biomimetics. As a model of optimized swimming organism in nature, diving beetles were chosen. In the paper, swimming motions of diving beetles were analyzed in viewpoint of robotics for applying them into the swimming motion of the robot. After modeling the kinematics of diving beetle through robotics engineering technique, we obtained swimming patterns of the one of living diving beetles, and then compared them with calculated optimal swimming patterns of a robot leg. As the first trial to compare the locomotion data of legs of the diving beetle with a robot leg, we have sorted two representative swimming patterns such as forwarding and turning. Experimental environment has been set up to get the motion data of diving beetles. The experimental equipment consists of a transparent aquarium and a high speed camera. Various swimming motions of diving beetles were recorded with the camera. After classifying swimming patterns of the diving beetle, we can get angular data of each joint on hind legs by image processing software, Image J. The data were applied to an optimized algorithm for swimming of a robot leg which was designed by robotics engineering technique. Through this procedure, simulated results which show trajectories of a robot leg were compared with trajectories of a leg of a diving beetle in desired directions. As a result, we confirmed considerable similarity in the result of trajectory and joint angles comparison.

Swimming Plans for a Bio-inspired Articulated Underwater Robot (생체모방형 수중다관절 로봇의 유영계획)

  • Kim, Hee-Jong;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.

Effect of Upper Extremity Weight Bearing on Locomotion of Infant with Athetoid Cerebral Palsy (상지 체중부하 운동 프로그램이 무정위 운동성 뇌성마비유아의 이동운동에 미치는 영향)

  • Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.8 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The present case study has a object to investigate the changes in locomotion patterns of infant with athetoid cerebral palsy would be occured by the program when it is applied with upper extremity weight bearing. The subject has been limited to one infant over one year of age, selected from the patients in the physical therapy clinic, Rehabilitation Center, Taegu University. Subject is normal in the visual and auditory sense, but he is unable to walk on his own Subject weighted 2.9kg at birth and underwent severe postnatal kernicterus, always on the baby-walker at homo. He disliked supine position characteristic in moving in athetoid type before he was under the program. The program was applied 7 months. Each session of the program is composed of 7 stages : (1) prebriefing between the therapist and the parents (2) pretherapy amusement time of the infant (3) warming-up (4) upper extremity weight bearing (5) cooling-down (6) post-therapy amusement time (7) postbriefing. The locomotion of the subject is proved to be influenced by the program. He showed a leftward circular movement as a result of the exercise, reducing the involuntary movement of his head when he was positioned for crawling. Later he proceeded to develop into creeping, crawling, kneeling and finally cruising. In conclusion, it appeared evident that the locomotive abilities of the subject is improved by the program explored in this study. The higher locomotive patterns could be achieved such as crawling, sitting, kneeling and cruising wich enable the upper extremities weight bearing.

  • PDF

Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

  • Kim, Deok-Hwan;Cho, Chi-Young;Ryu, Jaehwan
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a new locomotion mode recognition method based on a transformed correlation feature analysis using an electromyography (EMG) pattern. Each movement is recognized using six weighted subcorrelation filters, which are applied to the correlation feature analysis through the use of six time-domain features. The proposed method has a high recognition rate because it reflects the importance of the different features according to the movements and thereby enables one to recognize real-time EMG patterns, owing to the rapid execution of the correlation feature analysis. The experiment results show that the discriminating power of the proposed method is 85.89% (${\pm}2.5$) when walking on a level surface, 96.47% (${\pm}0.9$) when going up stairs, and 96.37% (${\pm}1.3$) when going down stairs for given normal movement data. This makes its accuracy and stability better than that found for the principal component analysis and linear discriminant analysis methods.

바이오센서

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

Proprioception, the regulator of motor function

  • Moon, Kyeong Min;Kim, Jimin;Seong, Yurim;Suh, Byung-Chang;Kang, KyeongJin;Choe, Han Kyoung;Kim, Kyuhyung
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.393-402
    • /
    • 2021
  • In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.

Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients (하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발)

  • 박병림;김민선
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

A Database of Caenorhabditis elegans Locomotion and Body Posture Phenotypes for the Peripheral Neuropathy Model

  • Chung, Ki Wha;Kim, Ju Seong;Lee, Kyung Suk
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.880-888
    • /
    • 2020
  • Inherited peripheral neuropathy is a heterogeneous group of peripheral neurodegenerative disorders including Charcot-Marie-Tooth disease. Many peripheral neuropathies often accompany impaired axonal construction and function. To study the molecular and cellular basis of axon-defective peripheral neuropathy, we explore the possibility of using Caenorhabditis elegans, a powerful nematode model equipped with a variety of genetics and imaging tools. In search of potential candidates of C. elegans peripheral neuropathy models, we monitored the movement and the body posture patterns of 26 C. elegans strains with disruption of genes associated with various peripheral neuropathies and compiled a database of their phenotypes. Our assay showed that movement features of the worms with mutations in HSPB1, MFN2, DYNC1H1, and KIF1B human homologues are significantly different from the control strain, suggesting they are viable candidates for C. elegans peripheral neuropathy models.

Lifelike Pattern Generator for a Giant Quadrupedal Walking System Based on Fuzzy Logic (퍼지로직 기반의 거대 4족 보행 시스템을 위한 실감형 패턴 발생기)

  • Lee, Sang-Won;Rim, Kyung-Hwa;Kwon, O-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • In this paper, we suggest a lifelike pattern generator for a quadruped walking system with a head, a tail, four legs and a torso. The system looks like a giant dinosaur which stands over 7 meters tall with its legs over 2 meters long. We focus on its lifelike naturalness. Thus, generating logical patterns in harmony with head-body-tail patterns and quadrupedal locomotion patterns makes you feel that the quadruped walking system is alive. The basic patterns of four legs and a body are obtained from a 3D graphic animation, which is made and captured from various motions of similar species in existence since the giant dinosaurs are exterminated. The dinosaur-like mechanism also is designed from bone and joint structures of quadrupedal animals. The lifelike pattern generator based on fuzzy logic could generate lifelike motions according to the dinosaur-like mechanism and the basic patterns. A series of computer simulations and experimental implements show that the pattern generator makes the quadruped walking system lifelike.