Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0178

A Database of Caenorhabditis elegans Locomotion and Body Posture Phenotypes for the Peripheral Neuropathy Model  

Chung, Ki Wha (Department of Biological Sciences, Kongju National University)
Kim, Ju Seong (Department of Biological Sciences, Kongju National University)
Lee, Kyung Suk (Department of Physics Education, Kongju National University)
Abstract
Inherited peripheral neuropathy is a heterogeneous group of peripheral neurodegenerative disorders including Charcot-Marie-Tooth disease. Many peripheral neuropathies often accompany impaired axonal construction and function. To study the molecular and cellular basis of axon-defective peripheral neuropathy, we explore the possibility of using Caenorhabditis elegans, a powerful nematode model equipped with a variety of genetics and imaging tools. In search of potential candidates of C. elegans peripheral neuropathy models, we monitored the movement and the body posture patterns of 26 C. elegans strains with disruption of genes associated with various peripheral neuropathies and compiled a database of their phenotypes. Our assay showed that movement features of the worms with mutations in HSPB1, MFN2, DYNC1H1, and KIF1B human homologues are significantly different from the control strain, suggesting they are viable candidates for C. elegans peripheral neuropathy models.
Keywords
Caenorhabditis elegans; disease model; locomotion; peripheral neuropathy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mattingly, B.C. and Buechner, M. (2011). The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev. Biol. 359, 59-72.   DOI
2 Nam, S.H., Hong, Y.B., Hyun, Y.S., Nam, D.E., Kwak, G., Hwang, S.H., Choi, B.O., and Chung, K.W. (2016). Identification of genetic causes of inherited peripheral neuropathies by targeted gene panel sequencing. Mol. Cells 39, 382-388.   DOI
3 Pareyson, D., Saveri, P., and Pisciotta, C. (2017). New developments in Charcot-Marie-Tooth neuropathy and related diseases. Curr. Opin. Neurol. 30, 471-480.   DOI
4 Pastore, M. and Calcagnì, A. (2019). Measuring distribution similarities between samples: a distribution-free overlapping index. Front. Psychol. 10, 1089.   DOI
5 Pierce, S.B., Chisholm, K.M., Lynch, E.D., Lee, M.K., Walsh, T., Opitz, J.M., Li, W., Klevit, R.E., and King, M.C. (2011). Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc. Natl. Acad. Sci. U. S. A. 108, 6543-6548.   DOI
6 Santel, A. and Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874.   DOI
7 Schwartz, N.U. (2019). Charcot-Marie-Tooth 2F (Hsp27 mutations): a review. Neurobiol. Dis. 130, 104505.   DOI
8 Shen, X.N., Sznitman, J., Krajacic, P., Lamitina, T., and Arratia, P.E. (2012). Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys. J. 102, 2772-2781.   DOI
9 Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Fullgenome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462-469.   DOI
10 Storey, J.D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol. 64, 479-498.   DOI
11 Tanaka, Y. and Hirokawa, N. (2002). Mouse models of Charcot-Marie- Tooth disease. Trends Genet. 18, S39-S44.   DOI
12 Vester, A., Velez-Ruiz, G., McLaughlin, H.M., NISC Comparative Sequencing Program, Lupski, J.R., Talbot, K., Vance, J.M., Züchner, S., Roda, R.H., Fischbeck, K.H., et al. (2013). A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum. Mutat. 34, 191-199.   DOI
13 Yemini, E., Jucikas, T., Grundy, L.J., Brown, A.E., and Schafer, W.R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877-879.   DOI
14 Weedon, M.N., Hastings, R., Caswell, R., Xie, W., Paszkiewicz, K., Antoniadi, T., Williams, M., King, C., Greenhalgh, L., Newbury-Ecob, R., et al. (2011). Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89, 308-312.   DOI
15 Wen, Q., Gao, S., and Zhen, M. (2018). Caenorhabditis elegans excitatory ventral cord motor neurons derive rhythm for body undulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170370.   DOI
16 Won, S.Y., Choi, B.O., Chung, K.W., and Lee, J.E. (2019). Zebrafish is a central model to dissect the peripheral neuropathy. Genes Genomics 41, 993-1000.   DOI
17 Wright, M.W., Eyre, T.A., Lush, M.J., Povey, S., and Bruford, E.A. (2005). HCOP: the HGNC comparison of orthology predictions search tool. Mamm. Genome 16, 827-828.   DOI
18 Yamaguchi, M. and Takashima, H. (2018). Drosophila Charcot-Marie-Tooth disease models. Adv. Exp. Med. Biol. 1076, 97-117.   DOI
19 Acunzo, J., Katsogiannou, M., and Rocchi, P. (2012). Small heat shock proteins HSP27 (HspB1), ${\alpha}B$-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell Biol. 44, 1622-1631.   DOI
20 Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S.Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L.T., et al. (2003). Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293-1299.   DOI
21 Baek, J.H., Cosman, P., Feng, Z., Silver, J., and Schafer, W.R. (2002). Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J. Neurosci. Methods 118, 9-21.   DOI
22 Byrne, J.J., Soh, M.S., Chandhok, G., Vijayaraghavan, T., Teoh, J.S., Crawford, S., Cobham, A.E., Yapa, N.M.B., Mirth, C.K., and Neumann, B. (2019). Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell. Mol. Life Sci. 76, 1967-1985.   DOI
23 Ben Arous, J., Laffont, S., and Chatenay, D. (2009). Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS One 4, e7584.   DOI
24 Bragato, C., Gaudenzi, G., Blasevich, F., Pavesi, G., Maggi, L., Giunta, M., Cotelli, F., and Mora, M. (2016). Zebrafish as a model to investigate dynamin 2-related diseases. Sci. Rep. 6, 20466.   DOI
25 Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.   DOI
26 Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Terada, S., Nakata, T., Takei, Y., et al. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597.   DOI
27 Zhen, M. and Samuel, A.D. (2015). C. elegans locomotion: small circuits, complex functions. Curr. Opin. Neurobiol. 33, 117-126.   DOI
28 Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449-451.   DOI
29 Edwards, S.L., Yorks, R.M., Morrison, L.M., Hoover, C.M., and Miller, K.G. (2015). Synapse-assembly proteins maintain synaptic vesicle cluster stability and regulate synaptic vesicle transport in Caenorhabditis elegans. Genetics 201, 91-116.   DOI
30 d'Ydewalle, C., Krishnan, J., Chiheb, D.M., Van Damme, P., Irobi, J., Kozikowski, A.P., Vanden Berghe, P., Timmerman, V., Robberecht, W., and Van Den Bosch, L. (2011). HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 17, 968-974.   DOI
31 England, J.D. and Asbury, A.K. (2004). Peripheral neuropathy. Lancet 363, 2151-2161.   DOI
32 Eschenbacher, W.H., Song, M., Chen, Y., Bhandari, P., Zhao, P., Jowdy, C.C., Engelhard, J.T., and Dorn, G.W., 2nd (2012). Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila. PLoS One 7, e44296.   DOI
33 Jordanova, A., Irobi, J., Thomas, F.P., Van Dijck, P., Meerschaert, K., Dewil, M., Dierick, I., Jacobs, A., De Vriendt, E., Guergueltcheva, V., et al. (2006). Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat. Genet. 38, 197-202.   DOI
34 Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den Bosch, L., Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van Impe, K., Fedotov, V., et al. (2004). Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602-606.   DOI
35 Hafezparast, M., Klocke, R., Ruhrberg, C., Marquardt, A., Ahmad-Annuar, A., Bowen, S., Lalli, G., Witherden, A.S., Hummerich, H., Nicholson, S., et al. (2003). Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808.   DOI
36 Harris, T.W., Arnaboldi, V., Cain, S., Chan, J., Chen, W.J., Cho, J., Davis, P., Gao, S., Grove, C.A., Kishore, R., et al. (2020). WormBase: a modern model organism information resource. Nucleic Acids Res. 48, D762-D767.
37 Hong, Y.B., Kang, J., Kim, J.H., Lee, J., Kwak, G., Hyun, Y.S., Nam, S.H., Hong, H.D., Choi, Y.R., Jung, S.C., et al. (2016). DGAT2 mutation in a family with autosomal-dominant early-onset axonal Charcot-Marie-Tooth disease. Hum. Mutat. 37, 473-480.   DOI
38 Inman, H.F. and Bradley, E.L., Jr. (1989). The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Stat. Theory Methods 18, 3851-3874.   DOI
39 Lee, A.J., Nam, D.E., Choi, Y.J., Nam, S.H., Choi, B.O., and Chung, K.W. (2020). Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy. Genes Genomics 42, 663-672.   DOI
40 Kim, J.Y., Woo, S.Y., Hong, Y.B., Choi, H., Kim, J., Choi, H., Mook-Jung, I., Ha, N., Kyung, J., Koo, S.K., et al. (2016). HDAC6 Inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 mutation. Stem Cells Int. 2016, 9475981.
41 Lee, H.J., Park, J., Nakhro, K., Park, J.M., Hur, Y.M., Choi, B.O., and Chung, K.W. (2012). Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J. Peripher. Nerv. Syst. 17, 418-421.   DOI
42 Long, R.T., Peng, J.B., Huang, L.L., Jiang, G.P., Liao, Y.J., Sun, H., Hu, Y.D., and Liao, X.H. (2019). Augmenter of liver regeneration alleviates renal hypoxiareoxygenation injury by regulating mitochondrial dynamics in renal tubular epithelial cells. Mol. Cells 42, 893-905.   DOI