Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.8.052

Proprioception, the regulator of motor function  

Moon, Kyeong Min (Department of Brain and Cognitive Sciences, DGIST)
Kim, Jimin (Department of Brain and Cognitive Sciences, DGIST)
Seong, Yurim (Department of Brain and Cognitive Sciences, DGIST)
Suh, Byung-Chang (Department of Brain and Cognitive Sciences, DGIST)
Kang, KyeongJin (Department of Brain and Cognitive Sciences, DGIST)
Choe, Han Kyoung (Department of Brain and Cognitive Sciences, DGIST)
Kim, Kyuhyung (Department of Brain and Cognitive Sciences, DGIST)
Publication Information
BMB Reports / v.54, no.8, 2021 , pp. 393-402 More about this Journal
Abstract
In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.
Keywords
Motor control; Proprioception; Proprioceptive receptor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang F, Belanger E, Cote SL et al (2018) Sensory afferents use different coding strategies for heat and cold. Cell Reports 23, 2001-2013   DOI
2 Denham JE, Ranner T and Cohen N (2018) Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 373, 20180208   DOI
3 Adrian ED and Zotterman Y (1926) The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J Physiol 61, 151-171   DOI
4 Hong GS, Lee B, Wee J et al (2016) Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron 91, 107-118   DOI
5 Hillier S, Immink M and Thewlis D (2015) Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair 29, 933-949   DOI
6 Chesler AT, Szczot M, Bharucha-Goebel D et al (2016) The role of PIEZO2 in human mechanosensation. N Engl J Med 375, 1355-1364   DOI
7 Masingue M, Faure J, Sole G, Stojkovic T and LeonardLouis S (2019) A novel nonsense PIEZO2 mutation in a family with scoliosis and proprioceptive defect. Neuromuscul Disord 29, 75-79   DOI
8 Akay T, Tourtellotte WG, Arber S and Jessell TM (2014) Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci U S A 111, 16877-16882   DOI
9 Arber S, Ladle DR, Lin JH, Frank E and Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485-498   DOI
10 Takeoka A and Arber S (2019) Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury. Cell Rep 27, 71-85   DOI
11 Wiltschko AB, Tsukahara T, Zeine A et al (2020) Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23, 1433-1443   DOI
12 Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3, 781-790   DOI
13 Mathis A, Mamidanna P, Cury KM et al (2018) Deep-LabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21, 1281-1289   DOI
14 Moore JC (1984) The Golgi tendon organ: a review and update. Am J Occup Ther 38, 227-236   DOI
15 Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73, 155-202   DOI
16 Burke W (1954) An organ for proprioception and vibration sense in Carcinus maenas. J Exp Biol 31, 127-138   DOI
17 Butler VJ, Branicky R, Yemini E et al (2015) A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans. J R Soc Interface 12, 20140963   DOI
18 Fang-Yen C, Wyart M, Xie J et al (2010) Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 20323-20328   DOI
19 Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94   DOI
20 Puckett Robinson C, Schwarz EM and Sternberg PW (2013) Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. PLoS One 8, e54971   DOI
21 Pringle JWS (1938) Proprioception in insects I. A new type of mechanical receptor from the palps of the cockroach. J Exp Biol 15, 101-113   DOI
22 White JG, Southgate E, Thomson JN and Brenner S (1986) The structure of the nervous-system of the nematode Caenorhabditis-elegans. Philos Trans R Soc B Biol Sci 314, 1-340
23 Jarrell TA, Wang Y, Bloniarz AE et al (2012) The connectome of a decision-making neural network. Science 337, 437-444   DOI
24 Ruffini A (1898) On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance. J Physiol 23, 190-208.3   DOI
25 Li W, Feng ZY, Sternberg PW and Xu XZS (2006) A C-elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684-687   DOI
26 Wicks SR, Roehrig CJ and Rankin CH (1996) A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria. J Neurosci 16, 4017-4031   DOI
27 Oliver KM, Florez-Paz DM, Badea TC, Mentis GZ, Menon V and de Nooij JC (2020) Molecular development of muscle spindle and Golgi tendon organ sensory afferents revealed by single proprioceptor transcriptome analysis. bioRxiv, 2020.04.03.023986
28 Maniere G and Coureaud G (2019) Editorial: from stimulus to behavioral decision-making. Front Behav Neurosci 13, 274   DOI
29 Singh AK (1991) The comprehensive history of psychology, Motilal Banarsidass
30 Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R and Lehman S (2000) How animals move: an integrative view. Science 288, 100-106   DOI
31 Bell C (1834) The hand; its mechanism and vital endowments, as evincing design, W. Pickering, London, 348
32 Sherrington CS (1906) The integrative action of the nervous system, Yale University Press, New Haven, CT, US, 411
33 Sherrington CS (1913) Reflex inhibition as a factor in the co-ordination of movements and postures. Q J Exp Physiol 6, 251-310   DOI
34 Dietz V (2013) Gait disorders. Handb Clin Neurol 110, 133-143   DOI
35 Fieseler C, Kunert-Graf J and Kutz JN (2018) The control structure of the nematode Caenorhabditis elegans: neurosensory integration and proprioceptive feedback. J Biomech 74, 1-8   DOI
36 Proske U and Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92, 1651-1697   DOI
37 Pearson KG (1995) Reflex reversal in the walking systems of mammals and arthropods; in 135-141, Springer US
38 Gandevia SC and McCloskey DI (1976) Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol 260, 387-407   DOI
39 Wen Q, Po MD, Hulme E et al (2012) Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 76, 750-761   DOI
40 Fouad AD, Teng S, Mark JR et al (2018) Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 7, e29913   DOI
41 Gao S, Guan SA, Fouad AD et al (2018) Excitatory motor neurons are local oscillators for backward locomotion. eLife 7, e29915   DOI
42 Shanbhag SR, Singh K and Naresh Singh R (1992) Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera : Drosophilidae). Int J Insect Morphol Embryol 21, 311-322   DOI
43 Mendes CS, Bartos I, Akay T, Marka S and Mann RS (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231   DOI
44 Mamiya A, Gurung P and Tuthill JC (2018) Neural coding of leg proprioception in Drosophila. Neuron 100, 636-650   DOI
45 He L, Gulyanon S, Mihovilovic Skanata M et al (2019) Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Curr Biol 29, 945-956 e943   DOI
46 Akitake B, Ren Q, Boiko N et al (2015) Coordination and fine motor control depend on Drosophila TRPgamma. Nat Commun 6, 7288   DOI
47 Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229-2234   DOI
48 Lee E, Sivan-Loukianova E, Eberl DF and Kernan MJ (2008) An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 18, 1899-1906   DOI
49 Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM and Ginty DD (2020) The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392-398   DOI
50 Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D and Sternberg PW (2006) Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242, 652-669   DOI
51 Xiao R and Xu XZS (2011) C. elegans TRP channels. Adv Exp Med Biol 704, 323-339   DOI
52 Yeon J, Kim J, Kim DY et al (2018) A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 16, e2004929   DOI
53 Marder E and Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76, 687-717   DOI
54 Tuthill JC and Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26, R1022-R1038   DOI
55 Grueber WB, Jan LY and Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867-2878   DOI
56 Hughes CL and Thomas JB (2007) A sensory feedback circuit coordinates muscle activity in Drosophila. Mol Cell Neurosci 35, 383-396   DOI
57 Chan WP, Prete F and Dickinson MH (1998) Visual input to the efferent control system of a fly's "gyroscope". Science 280, 289-292   DOI
58 Bartussek J and Lehmann FO (2016) Proprioceptive feedback determines visuomotor gain in Drosophila. R Soc Open Sci 3, 150562   DOI
59 Suster ML and Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416, 174-178   DOI
60 Corty MM, Tam J and Grueber WB (2016) Dendritic diversification through transcription factor-mediated suppression of alternative morphologies. Development 143, 1351-1362   DOI
61 Vaadia RD, Li WZ, Voleti V, Singhania A, Hillman EMC and Grueber WB (2019) Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr Biol 29, 935-944   DOI
62 Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059   DOI
63 Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A and Nose A (2016) A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 5, e13253   DOI
64 Guo Y, Wang Y, Zhang W et al (2016) Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113, 7243-7248   DOI
65 Suslak TJ, Watson S, Thompson KJ et al (2015) Piezo is essential for amiloride-sensitive stretch-activated mechanotransduction in larval Drosophila dorsal bipolar dendritic sensory neurons. PLoS One 10, e0130969   DOI
66 Hu ZT, Pym ECG, Babu K, Murray ABV and Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71, 92-102   DOI
67 Fox LE, Soll DR and Wu CF (2006) Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. J Neurosci 26, 1486-1498   DOI
68 Cheng LE, Song W, Looger LL, Jan LY and Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373-380   DOI
69 Tuthill JC and Azim E (2018) Proprioception. Curr Biol 28, R194-R203   DOI
70 Way JC and Chalfie M (1989) The Mec-3 gene of Caenorhabditis-elegans requires its own product for maintained expression and is expressed in 3 neuronal celltypes. Genes Dev 3, 1823-1833   DOI
71 Chatzigeorgiou M, Yoo S, Watson JD et al (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13, 861-868   DOI
72 Albeg A, Smith CJ, Chatzigeorgiou M et al (2011) C-elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46, 308-317   DOI
73 Liang X, Dong XT, Moerman DG, Shen K and Wang XM (2015) Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans. Dev Cell 33, 388-400   DOI
74 Huang MX and Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis-elegans. Nature 367, 467-470   DOI
75 Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4, 573-586   DOI
76 de Nooij JC, Doobar S and Jessell TM (2013) Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 77, 1055-1068   DOI
77 Gray JM, Hill JJ and Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102, 3184-3191   DOI
78 Korta J, Clark DA, Gabel CV, Mahadevan L and Samuel ADT (2007) Mechanosensation and mechanical load modulate the locomotory gait of swimming C-elegans. J Exp Biol 210, 2383-2389   DOI
79 Pierce-Shimomura JT, Chen BL, Mun JJ, Ho R, Sarkis R and McIntire SL (2008) Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 105, 20982-20987   DOI
80 Levanon D, Bettoun D, Harris-Cerruti C et al (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21, 3454-3463   DOI
81 Abraira VE and Ginty DD (2013) The sensory neurons of touch. Neuron 79, 618-639   DOI
82 Usoskin D, Furlan A, Islam S et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18, 145-153   DOI
83 Woo SH, Lukacs V, de Nooij JC et al (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18, 1756-1762   DOI
84 Florez-Paz D, Bali KK, Kuner R and Gomis A (2016) A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep 6, 25923   DOI
85 Daigle TL, Madisen L, Hage TA et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465-480   DOI