• Title/Summary/Keyword: Location coefficient

Search Result 489, Processing Time 0.035 seconds

Fluctuation Characteristics of Radial Void Fraction in Vertical Concentric Annuli (수직동심환상관에서 반경방향 보이드율의 변동특성)

  • Son B.J.;Kim I.S.;Kim M.C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.5
    • /
    • pp.516-524
    • /
    • 1987
  • This paper presents experimental data of fluctuation characteristics of local void fraction of air-water two-phase flow which are associated with the flow pattern, annular gap size and radial location in vertical concentric annuli with coefficient of skewness and kurtosis. The annular gap widths are 13mm, 11mm, and 9mm for a 38m inner diameter as the lucite outer tube. A electrical conductivity probe was used to measure the local void fraction and traversed diametrically from inner wall to outer wall using radial increments of 2mm. It was shown that distribution of the coefficient of skewness and kurtosis, which is related that the one is the asymmetry and the other peakness of local void fraction distribution was influenced by flow pattern, annular gap size and radial location.

  • PDF

An Analysis of Specialization Factors for Greenhouse-Grown Spinach and Lettuce (시설 시금치와 상추의 특화 요인 분석)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.382-387
    • /
    • 2017
  • This paper analyzes the specialization factors for greenhouse-grown horticultural crops and location quotient. We derived the location quotient of two crops from the Agricultural Census in 2000, 2005, and 2010. The location quotient shows that specialization factors for spinach and lettuce became more concentrated. This means that cultivation of vegetables lean too much towards specialized regions. Implementation policies based on the level of specialization is expected to more efficiently improve the competitiveness of regional agriculture. The logit analysis showed that GRDP, age, education, average employee, and ratio of computer use had a significant impact on specialization of spinach. GRDP, age, and education negatively affected the specialization coefficient of spinach. However, average employee, and ratio of computer use positively affected the specialization coefficient of spinach. Based on these results, we set up the policy tools specializing the regional location quotient.

A Preliminary Study on the Repeatability of Facial Feature Variables Used in the Sasang Constitutional Diagnosis (체질진단에 활용되는 안면 특징 변수들의 반복성에 대한 예비 연구)

  • Roh, Min-Yeong;Kim, Jong-Yeol;Do, Jun-Hyeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.29 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • Objectives Facial features can be utilized as an indicator of Korean medical diagnosis. They are often measured by using the diagnostic device for an objective diagnosis. Accordingly, it is necessary to verify the reliability of the features which are obtained from the device for the accurate diagnosis. In this study, we attempt to evaluate the repeatability of facial feature variables using the Sasang Constitutional Analysis Tool(SCAT) for the Sasang Constitutional face diagnosis. Methods Facial pictures of two subjects were taken 24 times respectively for two days according to a standard guideline. In order to evaluate the repeatability, the coefficient of variation was calculated for the facial features extracted from frontal and profile images. Results The coefficient of variation was less than 10% in most of the facial features except the upper lip, trichion, and chins related features. Conclusions It was confirmed that the coefficient of variation was small in most of the features which enables the objective and reliable analysis of face. However, some features showed the low reliability because the location of facial landmarks related to them is ambiguous. In order to solve the problem, a clear basis for the location discussion is required.

Study on the Estimation of Discharge Coefficient of Sluice for Tidal Power Generation by Performing Physical Experiment (수리실험에 의한 조력발전용 수문의 유량계수 산정에 관한 고찰)

  • Oh, Sang-Ho;Lee, Kwang Soo;Lee, Dal Soo;Jang, Se-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.160.1-160.1
    • /
    • 2011
  • In this study, the influence of methodology of assessing water levels on the discharge coefficient of sluice for tidal power generation was investigated. A physical experiment was performed in a planar open channel by installing 1/70 scale model of the sluice caisson in the planar open channel. In front of and behind the sluice model, sloping bathymetry was made to reproduce corresponding field condition. By analyzing the experimental results, it was found that the location of measuring water levels significantly affects the estimates of the discharge coefficient, due to the variability of the parameter according to the head difference between the measuring locations. Therefore, it is necessary to be careful in estimating and utilizing the discharge coefficient in the relevant study of a tidal power generation.

  • PDF

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement (자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발)

  • Kim, Jae-Jin;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Optimum Design for Inlet and Outlet Locations of Rectangular Expansion Chamber for Improving Acoustic Performance (사각형 단순 확장소음기의 성능향상을 위한 입$\cdot$출구 위치의 최적설계)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.738-746
    • /
    • 1999
  • The performance of muffler can be improved for a frequency range of interest by moving inlet and outlet locations. And optimal location of inlet and outlet can be determined to improve the acoustic performance. The optimum design using FEM, however, may take a very long time and be very hard to take inlet and outlet locations as design variables. In this paper, the acoustic performance of reactive type single expansion chamber muffler is predicted using higher order mode theory. The sensitivity analysis of transmission loss with respect to the location of inlet and outlet is suggested. And the acoustic power transmission coefficient for a frequency of interest is used as cost function. Optimum location of inlet and outlet is determined to minimize cost function by using SUMT algorithm.

  • PDF

Analysis of mass and location of proportional damping system using the change of eigenvectors (고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Detection and Location of Cable Fault Using Improved SSTDR (개선된 SSTDR을 이용한 케이블 고장 검출과 위치 계산)

  • Jeon, Jeong-Chay;Kim, Jae-Jin;Choi, Myeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1583-1589
    • /
    • 2016
  • This paper proposes an improved spread spectrum time domain reflectometry (ISSTDR) using time-frequency correlation and reference signal elimination method in order to have more accurate fault determination and location detection than conventional (SSTDR) despite increased signal attenuation due to the long distance to cable fault location. The proposed method has a two-step process: the first step is to detect a peak location of the reference signal using time-frequency correlation analysis, and the second step is to detect a peak location of the correlation coefficient of the reflected signal by removing the reference signal. The proposed method was validated through comparison with existing SSTDR methods in open-and short-circuit fault detection experiments of low voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.