• Title/Summary/Keyword: Localized Electrical Properties

Search Result 35, Processing Time 0.025 seconds

Electrical and Microwave properties of Amorphous As-Ge-Te devices (비정질 As-Ge-Te 스위칭 소자의 전기적 및 마이크로파 주파수 특성)

  • Yi, Byeong-Seok;Cheon, Seok-Pyo;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1016-1018
    • /
    • 1995
  • In this paper, we studied the electrical and the microwave properties of the amorphous $As_{10}Ge_{15}Te_{75}$ thin film. The electrical properties of a-$As_{10}Ge_{15}Te_{75}$ thin film were examined d.c. and a.c. bias with annealing condition. As the result of the electrical properties, we observed the physical characteristics of a-$As_{10}Ge_{15}Te_{75}$ thin film such as the density of defect states, characteristic relaxation time, localized density of states, and localized wave function by using CBH and QMT model. We also examined the microwave conduction properties before and after d.e. switching.

  • PDF

Controlled Synthesis of Colloidal Cu Nanowires and Nanoplates and Their Tunable Localized Surface Plasmon Resonances

  • Seokhwan Kim;Jong Wook Roh;Dong Choon Hyun;Seonhwa Park;Yuho Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.547-553
    • /
    • 2024
  • Precise control over the morphology of nanostructures is critical for tailoring their physical and chemical properties. This study addresses the challenge of developing a simple, integrated method for synthesizing both 1D and 2D colloidal Cu nanostructures in a single system, achieving successful tuning of their localized surface plasmon resonance (LSPR) properties. A facile hydrothermal synthesis utilizing potassium iodide (KI) and hexadecylamine (HDA) is presented for controlling Cu nanostructure morphologies. The key to achieving 1D nanowires (NWs) and 2D nanoplates (NPs) depends on the controlled adsorption of HDA molecules and iodide (I-) ions on specific crystal facets. Depending on the morphologies, the resultant Cu nanostructures exhibit tunable LSPR peaks from 558 nm [nanoplates (NPs)] to 590 nm [nanowires (NWs)]. These results pave the way for the scalable and cost-effective production of plasmonic Cu nanostructures with tunable optical properties, holding promise for applications in sensing, catalysis, and photonic devices.

Characterization of gold nanoparticles on optical fiber for localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금 나노 입자 특성 분석)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2009
  • In this study, the optical properties of localized surface plasmon resonance sensor using optical fiber was analyzed as the variation of a size and surface density of gold nano particles on the etched optical fiber surface. It is shown that a size and surface density of gold nano particles on optical fiber surface are controlled by $Na_3$ citrate quantity and pH of gold colloid solution. To measure the sensitivity, peak wavelength of absorbance spectrum was detected as the reflective index of the solution. The sensor sensitivity is linearly dependent on the size and surface densities of gold nano particles from the results of optical experiments.

The physical properties and switching characteristics of amorphous As-Ge-Te thin film (비정질 As-Ge-Te 박막의 물리적 성질 및 스위칭 특성)

  • 이현용;천석표;이영종;정홍배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.7
    • /
    • pp.901-907
    • /
    • 1995
  • The switching characteristics of As$_{10}$ Ge$_{15}$ Te$_{75}$ thin film were investigated under d.c. bias. And the frequency dependence of the conductivity was analysed with regard to the temperature dependence, in order to find the physical properties of the As$_{10}$ Ge$_{15}$ Te$_{75}$ thin film ; a characteristic relaxation time (.tau.$_{0}$ ), the spatial density of defect states (N), and the localized wavefunction (.alpha.$^{-1}$ ). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively. The threshold voltage is increased as the thickness and the electrode distance is increased, while the threshold voltage is decreased in proportion to the increased annealing time and temperature.

  • PDF

A Review of Graphene Plasmons and its Combination with Metasurface

  • Liu, Chuanbao;Bai, Yang;Zhou, Ji;Zhao, Qian;Qiao, Lijie
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.349-365
    • /
    • 2017
  • Graphene has attracted a lot of attentions due to the unique electrical and optical properties. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz and mid-infrared and it demonstrates an extremely large confinement at the surface because of the particular electronic band structures. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. These features make graphene a promising candidate for plasmonics, biosensing and transformation optics. Furthermore, the combination of graphene and metasurfaces presents a powerful tunability for exotic electromagnetic properties, where the metasurfaces with the highly-localized fields offer a platform to enhance the interaction between the incident light and graphene and facilitate a deep modulation. In this paper, we provide an overview of the key properties of graphene, such as the surface conductivity, the propagating surface plasmon polaritons, and the localized surface plasmons, and the hybrid graphene/metasurfaces, either metallic and dielectric metasurfaces, from terahertz to near-infrared frequencies. Finally, there is a discussion for the current challenges and future goals.

Ferromagnetic Properties in Diluted Magnetic Semiconductors (Al,Mn)N grown by PEMBE

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.12-15
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_{3}$ ($La_{0.7}Sr_{0.3}FeO_{3}$ 세라믹스의 전기전도 특성)

  • 정우환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.376-382
    • /
    • 2001
  • Magnetic and transport properties in the ceramic specimen of L $a_{0.7}$S $r_{0.3}$Fe $O_3$ with orthohombic structure has been investigated. Weak ferromagnetism has been observed in a ceramic sample of L $a_{0.7}$S $r_{0.3}$Fe $O_3$. Large dielectric relaxation of Debye type is observed in paramagnetic states within the temperature range of 130K~200K. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dispersion is related to holes hopping between F $e^{3+}$ and F $e^{4+}$ ions. The temperature dependencies of thermoelectric power and Dc conductivity suggest that the charge carrier responsible for the conduction are strongly localized. These experimental results have been interpreted in terms of a hopping process involving small polaron.n.laron.n.

  • PDF

Fabrication and Optical Properties of (3-mercaptopropyl) Trimethoxysilane (MPTMS)-assisted Silver Nanofilm on Various Substrates (다양한 투명 기판의 3-MPTMS 처리에 의한 은 나노 박막의 광 특성 변화 연구)

  • Hyunsung Choi;Seungjun Oh;Doyeon Kil;Taewon Goo;Young-Mi Bahk
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.283-288
    • /
    • 2023
  • We investigate the optical and electrical properties of silver nanofilms deposited on transparent substrates such as quartz, sapphire, and slide glass treated with (3-mercaptopropyl) trimethoxysilane (MPTMS). The effect of MPTMS treatment on physical properties is studied through scanning electron microscope (SEM) images, UV-visible transmission, and current-voltage measurements. The SEM images show morphology change of the silver nanofilm, and the UV-visible transmission spectra reveal that the localized surface-plasmon resonance effect is reduced due to the morphology change. These results imply that the uniformity of silver nanofilm is improved by MPTMS treatment for various transparent substrates, resulting in a 100-fold decrease in the electrical resistance of the silver nanofilm.

Electrical Transport Properties of Gd0.33Sr0.67FeO3 Ceramics (Gd0.33Sr0.67FeO3 세라믹스의 전기전도 특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.131-135
    • /
    • 2006
  • In this study, the dielectric, magnetic and transport properties of $Gd_{0.33}Sr_{0.67}FeO_3$ have been analyzed. The dielectric loss anomaly was found to be around 170 K. The activation energy corresponding to relaxation process of this dielectric anomaly was 0.17 eV. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dielectric relaxation peak observed is correlated with polaron hopping between $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical resistivity displayed thermally activated temperature dependence above 200 K with an activation energy of 0.16 eV. In addition, the temperature dependence of thermoelectric power and resistivity suggests that the charge carrier responsible for conduction is strongly localized.

Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy (Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.438-442
    • /
    • 2005
  • Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.