• 제목/요약/키워드: Local convective heat transfer

검색결과 79건 처리시간 0.023초

Investigation of Spacer Grid Thermal Mixing Performance Based on Hydraulic Tests

  • Yang, Sun-Kyu;Min, Kyung-Ho;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.377-382
    • /
    • 1995
  • An evaluation method of spacer grid thermal mixing performance in rod bundles is suggested based on hydraulic tests in a single phase flow. Heat transfer correlation was derived by the analogy between momentum and heat transfer. Three of major factors, such as blockage ratio of spacer grid, convective flow swirling, and turbulent intensity, were found to be significantly influential to the spacer grid thermal mixing performance. Local heat transfer near spacer grid was predicted for the hydraulic test of 6 ${\times}$ 6 rod bundles with neighboring different spacer grids.

  • PDF

경사진 벽부착 제트의 열전달 특성에 대한 연구 (An Investigation on Heat transfer Characteristics of Inclined Wall Attaching Offest jet)

  • 심재경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.200-209
    • /
    • 1998
  • Experiments have been conducted to determine heat transfer characteristics for a two-dimen-sional turbulent wall attaching offset jet at different oblique angles to a flat surface. The local Nusselt number distributions were measured using liquid crystal as a temperature sensor. Wall static pressure coefficient profiles were measured at the Reynolds number Re 53200(based on the nozzle width, D) the offset ratio H/D from 2.5 to 10 and the oblique angle a from $0^{\circ}$, to $40^{\circ}$ It is observed that the maximum Nusselt number point occurs slightly upstream of time-averaged reattachment point for all oblique angles. The correlations between the maximum Nusselt number and Reynolds number offset ration and oblique angle are presented.

  • PDF

수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발 (Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate)

  • 성형진;정명균
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구 (A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow)

  • 이기백;손정호;양장식
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

격판을 가진 수평환상공간에서의 자연대류 열전달 (Natural Convection Heat Transfer from a Horizontal Annulus with Spacers)

  • 이범철;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.153-160
    • /
    • 1989
  • 본 연구는 수평전도관과 수평원통 사이의 환상공간에 수직격판이 부착된 경우와 수평직판이 부착된 경우에 Rayleigh수와 무차원 관열전도율을 변수로하여 수직해석과 Mach-Mehnder 간섭계를 이용한 실험으로 자연대류 열전달특성을 연구 하였다.

EFFECTS OF SORET AND DUFOUR ON NATURAL CONVECTIVE FLUID FLOW PAST A VERTICAL PLATE EMBEDDED IN POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION VIA FEM

  • RAJU, R. SRINIVASA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.309-332
    • /
    • 2016
  • Finite element method has been applied to solve the fundamental governing equations of natural convective, electrically conducting, incompressible fluid flow past an infinite vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipation, Soret and Dufour effects. In this research work, the results of coupled partial differential equations are found numerically by applying finite element technique. The sway of significant parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer, Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity, temperature and concentration evaluations in the boundary layer region are examined in detail and the results are shown in graphically. Furthermore, the effect of these parameters on local skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A very good agreement is noticed between the present results and previous published works in some limiting cases.

열교환기 내부 유로 종횡비 변화에 따른 국소 열/물질전달 특성 고찰 (Effects of Aspect Ratio on Local Heat/Mass Transfer in Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.569-580
    • /
    • 2005
  • The present study investigates the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger. The effects of duct aspect ratio and flow velocity on the heat/mass transfer are investigated. Local heat/mass transfer coefficients on the corrugated duct sidewall are determined using a naphthalene sublimation technique. The aspect ratios of the wavy duct are 7.3, 4.7 and 1.8 with the corrugation angle of $145\Omega$. The Reynolds numbers, based on the duct hydraulic diameter, vary from 300 to 3,000. The results show that at the low Re(Re $\leq$ 1000) the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, non-uniform heat/mass transfer coefficients distributions appear. As the aspect ratio decreases, the number of cells formed by secondary vortices are reduced and secondary vortices and comer vortices mix due to decreased aspect ratio at Re$\leq$1000. At Re >1000, the effects of corner vortices become stronger. The average Sh for the aspect ratio of 7.3 and 4.7 are almost same. But at the small aspect ratio of 1.8, the average Sh decreases due to decreased aspect ratio. More pumping power (pressure loss) is required for the larger aspect ratio due to the higher flow instability.

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향 (The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet)

  • 신창환;임성환;우성제;조형희
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.878-885
    • /
    • 2005
  • The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipments. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the fee surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance fur H/W$\le$1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, Hc are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced fur region from the stagnation to x/W$\~$8 in the free surface jet and to x/W$\~$5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream.

평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향 (The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet)

  • 신창환;임성환;우성제;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1452-1457
    • /
    • 2004
  • The water jet impingement cooling is one of the techniques to remove heat from high heat flux equipments. We investigate the local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer in the free surface jet and submerged jet. Boiling is initiated from the furthest downstream and the wall temperature increase is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for $H/W{\leq}1$ causes the significant increases and distribution changes in heat transfer. Developed boiling reduces the differences in heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to guide plate, $H_c$ are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increase as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to $x/W{\sim}8$ in the free surface jet and to $x/W{\sim}5$ in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet compare with higher velocity condition. It is because the increased velocity by collar is de-accelerated at downstream.

  • PDF