• Title/Summary/Keyword: Local Projection method

Search Result 90, Processing Time 0.024 seconds

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

Accurate and efficient GPU ray-casting algorithm for volume rendering of unstructured grid data

  • Gu, Gibeom;Kim, Duksu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.608-618
    • /
    • 2020
  • We present a novel GPU-based ray-casting algorithm for volume rendering of unstructured grid data. Our volume rendering system uses a ray-casting method that guarantees accurate rendering results. We also employ the per-pixel intersection list concept in the Bunyk algorithm to guarantee an accurate result for non-convex meshes. For efficient memory access for the lists on the GPU, we represent the intersection lists for all faces as an array with our novel construction algorithm. With the intersection lists, we perform ray-casting on a GPU, and a GPU thread handles each ray. To increase ray-coherency in a thread block and improve memory access efficiency, we extend a prior image-tile-based work distribution method to fit modern GPU architectures. We also show that a prior approach using a per-thread local buffer to reduce redundant computation is not appropriate for modern GPU architectures. Instead, we take an on-demand calculation strategy that achieves better performance even though it allows duplicate computations. We applied our method to three unstructured grid datasets with different characteristics. With a GPU, our method achieved up to 36.5 times higher performance for the ray-casting process and 19.7 times higher performance for the whole volume rendering process compared with the Bunyk algorithm using a CPU core. Also, our approach showed up to 8.2 times higher performance than a GPU-based cell projection method while generating more accurate rendering results. These results demonstrate the efficiency and accuracy of our method.

Word Image Decomposition from Image Regions in Document Images using Statistical Analyses (문서 영상의 그림 영역에서 통계적 분석을 이용한 단어 영상 추출)

  • Jeong, Chang-Bu;Kim, Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.591-600
    • /
    • 2006
  • This paper describes the development and implementation of a algorithm to decompose word images from image regions mixed text/graphics in document images using statistical analyses. To decompose word images from image regions, the character components need to be separated from graphic components. For this process, we propose a method to separate them with an analysis of box-plot using a statistics of structural components. An accuracy of this method is not sensitive to the changes of images because the criterion of separation is defined by the statistics of components. And then the character regions are determined by analyzing a local crowdedness of the separated character components. finally, we devide the character regions into text lines and word images using projection profile analysis, gap clustering, special symbol detection, etc. The proposed system could reduce the influence resulted from the changes of images because it uses the criterion based on the statistics of image regions. Also, we made an experiment with the proposed method in document image processing system for keyword spotting and showed the necessity of studying for the proposed method.

Optical flow of heart images by image-flow conservation equation and functional expansion (영상유체보존식과 함수전개법에 의한 심장영상의 광류)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1341-1347
    • /
    • 2007
  • The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential images is proposed. The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images. For comparative evaluation, we applied Horn and Schunck's method, a standard multigrid method, and our proposed algorithm to sequential image.

A Method for the Increasing Efficiency of the Watershed Based Image Segmentation using Haar Wavelet Transform (Haar 웨이블릿 변환을 사용한 Watershed 기반 영상 분할의 효율성 증대를 위한 기법)

  • 김종배;김항준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents an efficient method for image segmentation based on a multiresolution application of a wavelet transform and watershed segmentation algorithm. The procedure toward complete segmentation consists of four steps: pyramid representation, image segmentation, region merging and region projection. First, pyramid representation creates multiresolution images using a wavelet transform. Second, image segmentation segments the lowest-resolution image of the pyramid using a watershed segmentation algorithm. Third, region merging merges the segmented regions using the third-order moment values of the wavelet coefficients. Finally, the segmented low-resolution image with label is projected into a full-resolution image (original image) by inverse wavelet transform. Experimental results of the presented method can be applied to the segmentation of noise or degraded images as well as reduce over-segmentation.

Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis (주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과)

  • Lee, Hwan-Jik;Choi, Jung-Ju
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Specular reflections provide the visual feedback that describes the material type of an object, its local shape, and lighting environment. In photorealistic rendering, there have been a number of research available to render specular reflections effectively based on a local reflection model. In traditional cel animations and cartoons, specular reflections plays important role in representing artistic intentions for an object and its related environment reflections, so the shapes of highlights are quite stylistic. In this paper, we present a method to render and control stylized specular reflections using projective textures based on principal curvature analysis. Specifying a texture as a pattern of a highlight and projecting the texture on the specular region of a given 3D model, we can obtain a stylized representation of specular reflections. For a given polygonal model, a view point, and a light source, we first find the maximum specular intensity point, and then locate the texture projector along the line parallel to the normal vector and passing through the point. The orientation of the projector is determined by the principal directions at the point. Finally, the size of the projection frustum is determined by the principal curvatures corresponding to the principal directions. The proposed method can control the position, orientation, and size of the specular reflection efficiently by translating the projector along the principal directions, rotating the projector about the normal vector, and scaling the principal curvatures, respectively. The method is be applicable to real-time applications such as cartoon style 3D games. We implement the method by Microsoft DirectX 9.0c SDK and programmable vertex/pixel shaders on Nvidia GeForce FX 7800 graphics subsystems. According to our experimental results, we can render and control the stylized specular reflections for a 3D model of several ten thousands of triangles in real-time.

  • PDF

Breast Cancer in Lampang, a Province in Northern Thailand: Analysis of 1993-2012 Incidence Data and Future Trends

  • Lalitwongsa, Somkiat;Pongnikorn, Donsuk;Daoprasert, Karnchana;Sriplung, Hutcha;Bilheem, Surichai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8327-8333
    • /
    • 2016
  • Background: The recent epidemiologic transition in Thailand, with decreasing incidence of infectious diseases along with increasing rates of chronic conditions, including cancer, is a serious problem for the country. Breast cancer has the highest incidence rates among females throughout Thailand. Lampang is a province in the upper part of Northern Thailand. A study was needed to identify the current burden, and the future trends of breast cancer in upper Northern Thai women. Materials and Methods: Here we used cancer incidence data from the Lampang Cancer Registry to characterize and analyze the local incidence of breast cancer. Joinpoint analysis, age period cohort model and Nordpred package were used to investigate the incidences of breast cancer in the province from 1993 to 2012 and to project future trends from 2013 to 2030. Results: Age-standardized incidence rates (world) of breast cancer in the upper parts of Northern Thailand increased from 16.7 to 26.3 cases per 100,000 female population which is equivalent to an annual percentage change of 2.0-2.8%, according to the method used. Linear drift effects played a role in shaping the increase of incidence. The three projection method suggested that incidence rates would continue to increase in the future with incidence for women aged 50 and above, increasing at a higher rate than for women below the age of 50. Conclusions: The current early detection measures increase detection rates of early disease. Preparation of a budget for treatment facilities and human resources, both in surgical and medical oncology, is essential.

Iterative Reduction of Blocking Artifact in Block Transform-Coded Images Using Wavelet Transform (웨이브렛 변환을 이용한 블록기반 변환 부호화 영상에서의 반복적 블록화 현상 제거)

  • 장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2369-2381
    • /
    • 1999
  • In this paper, we propose an iterative algorithm for reducing the blocking artifact in block transform-coded images by using a wavelet transform. In the proposed method, an image is considered as a set of one-dimensional horizontal and vertical signals and one-dimensional wavelet transform is utilized in which the mother wavelet is the first order derivative of a Gaussian like function. The blocking artifact is reduced by removing the blocking component, that causes the variance at the block boundary position in the first scale wavelet domain to be abnormally higher than those at the other positions, using a minimum mean square error (MMSE) filter in the wavelet domain. This filter minimizes the MSE between the ideal blocking component-free signal and the restored signal in the neighborhood of block boundaries in the wavelet domain. It also uses local variance in the wavelet domain for pixel adaptive processing. The filtering and the projection onto a convex set of quantization constraint are iteratively performed in alternating fashion. Experimental results show that the proposed method yields not only a PSNR improvement of about 0.56-1.07 dB, but also subjective quality nearly free of the blocking artifact and edge blur.

  • PDF

Stability Assessment on the Final Pit Slope in S Limestone Mine (S 석회석광산에서의 최종 잔벽사면의 안정성 평가)

  • Sun, Woo-Choon;Lee, Yun-Su;Kim, Hyun-Woo;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.