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Optical flow of heart images by image-flow conservation equation and functional expansion
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ABSTRACT

The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in
this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential
images is proposed.

The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally
related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The
equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the
displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional
derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images.

For comparative evaluation, we applied Horn and Schunck’s method, a standard multigrid method, and our proposed algorithm to
sequential image.
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I. INTRODUCTION methods. pattern matching methods require identification of

a pattern in sequential images. The pattern can be an edge or

Two classes of techniques which have been used for other structure or simply a region in one image which is used
motion measurement are pattern matching and gradient as a kernel for searching a second image. Pattern matching
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methods can fail if a pattern is ambiguous (e.g.repeated) or if
the motion severely distorts its shape. Gradient methods
utilize the differential brightness constancy equation to
compute small displacements in the direction of brightness
gradients in each image[1]. The remainder of the motion
field is then determined by regularization, which is the
application of smoothness constraints. Gradient methods
have the drawback that the displacement must be small
compared to the scale length of the intensity gradients in the
image. The regularization process arbitrarily imposes
smoothness in the motion, and therefore can distort the real
variations in displacement. Most optical flow calculations
do not allow explicitly for any sources of intensity. A recent
attempt to include sources was made by Prince and
McVeigh [2], but their technique used a specific model for
the source term and required an a priori estimate of the
motion.

A different method of motion computation was recently
developed which is based on brightness constancy and the
resulting relationship between weighted integrals of
sequential images. The linearized integral transformation
equations are taken as constraints, and the estimated motion
and brightness changes can be computed by the method of
convex projections [3-5]. By suitable choice of weighting
functions, the motion estimate is built up at varying scale
lengths by Fourier components. This differs from
multiresolution methods [6-8] in which the image intensity
rather than the motion itself is separated into different scale
lengths. However, this technique still contained an arbitrary
parameter, analogous to the arbitrary weights of
regularization formulas used with gradient-based methods.
In this paper, we demonstrate the effectiveness of our
proposed method by comparing with conventional methods
including Hom and Schunck’s method, a standard multigrid
optical flow algorithm.

1. METHODS

The transformation which relates two images o (r) and

o (r) in a time sequence consists of two part : (1) a
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displacement field s (r) and () intensity sources p, (r).
Only two-dimensional images with 7= (z,y) are
considered here, but generalization to three or more
dimensions is straightforward. It is easy to see that a
transformation relating two images is not unique. For
example the transformation between any two images, even if
related by a simple translation, can be represented purely by
intensity sources equal to the difference between the two
images. Therefore additional criteria are required in order to
obtain a unique solution. Some physical insight into this
problem is obtained by examining the temporal change in
image intensity p due to motion and sources. One
possibility is to model the image intensity as the local
density of a fluid. The general fluid conservation law with

sources is :

ap,
ot

9p _
. -
ot +V * pu (1)

where u = 8s/8t. The convective derivative dp/dt
represents the change in intensity as seen by an observer

moving with an image point and is given by :

8p _ op ap,
—_—— ) _ ——— L
It : +ue Vp r pV s u ¥))

In a finite time interval, the change in convected intensity
is Dp=48p, — pV + ds. Note that a given convected
intensity change Dp consists of two terms which can be
added together in any combination. The optimal solution is
assumed to be the one which minimizes the magnitudes of
the terms Jp, and pV e+ Jds,. Since each term
contributes equally to the convective derivative, they are
weighted equally. The squared norm is therefore taken to be
the sum of the squared norms of each of these terms :

holl?2= /drp(r)(lpV . 85 +6p,*) 3
= llpv « és >+ || 6p, | °
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where v = (ds * dp,) and p(r) is a non-negative
weighting function which will be determined below. To be
precise, this a true norm for the pair ( pV * ds,0p, )
rather than for v itself, but for simplicity the notation

l v | % isused. The importance of the metric factor p ()
is that it can be a function of the image intensity p(r). If
this factor is taken to be p(r) = l/p, then the norm is

2
) @

Note that in this case the square norm of the convective

given by :

0p,
ol 2=fdrp(|v . 68]2—!*—5—

derivative Dp is given by :

/ drp( 2)= ©

f dr(—/l;|5ps|2—2(v + 65)(6p8) +pIV « 6P

dp,
__P__v.(ss
pP

Hence the cross-comrelation between the two terms is
independent of the local image intensity. In other words, the
interference is spread out over the image rather than being
concentrated in regions of high (or low) intensity. This
means that there is no tendency for the motion to align itself
with intensity gradients in the images.

Note that the norm in Eq.(4) is zero for incompressible
motion without sources. For this type of motion it is
appropriate simply to minimize the norm of the
displacement field. =~ A modified norm can combine
compressible and incompressible motions as follows :

holl?= ©
)

with & = 0. The term containing ¢ is only significant

) op,
lim drp(a|55|2+|v . 5s|2+i%

a—0

when the other terms are zero.
This norm is optimal in the following sense. The image
intensity is treated as a fluid density. As asmall region (fluid

element) moves from one image to the next, its intensity
(fluid density) can change due to expansion or contraction,
or due to sources. This norm minimizes the changes in
image intensity from both of these effect. Notice that there
is no cost associated with shear or rotation, since such
motions do not change the image intensity along a trajectory.
Hence smoothness of motion is not arbitrarily imposed. Of
course, the above norm may not be optimal if additional a
priori information is available regarding the physical
characteristics of the images.

It has been assumed that the image intensity represents a
physical quantity which obeys a kind of conservation law
with sources. The model may be more appropriate for some
specific function of intensity. For example, X-ray film
intensity ideally represents a uniform incident intensity
which is reduced exponentially by some absorbing material
between the source and the image. Since the optical flow
represents motion of this absorbing material, the logarithm
of intensity is a better approximation to a conserved
quantity, and should be represented by p. For scene
analysis, the image typically represents light reflected or
scattered from surfaces moving under nearly constant
illumination. If absorption is negligible, then small
variations in position or orientation modify the direction of
reflection and the angular distribution of scattered light
without changing the integrated intensity, so that the
reflected light acts as a conserved quantity. Absorption can
be represented as a negative source. Hence it is appropriate
to let p be the image intensity in the equations above.

The integrand in Eq.(6) is zero in regions of zero intensity
(actually the source term is undefined). Therefore the
computed motion in dark regions of the image is arbitrary.
This not a drawback in terms of visualization, but may be
undesirable physically if material is present in these regions
but not imaged. If interpolation of motion is desired in these
dark regions, or if sources (such as noise) are present in these
regions, then either the image intensity should be made
nonzero everywhere or a different metric factor p (r)
should be used.

Eq(6) can be used for regularization of optical flow as
computed by standard gradient-based methods. Such
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methods are limited to small displacements, however, by the
linear approximation p(r+s) = p(r)+s » v p(r).
For the results below, the motion is computed by solving a
series of integral constraint Eq. (3) ~(5). The constraints are
of the form :

/dTZgn (7'2 )Pz (7'2 )= Q)
/drlgn (r, +s) [pl (r )+ p, (ry )]

where p, (r ) and D (7"2) are the image intensities and
9n (r) is arbitrary weighting function. The motion is

computed by iteratively projecting onto the solution space of
each constraint equation.

. EXPERIMENTAL RESULTS

For comparative evaluation, we applied Hom and
Schunck’s method, a standard multigrid method, and our
proposed algorithm to sequential image. The comparison of
the three methods are carried out mainly by evaluating the
similarities between the original second image and an
estimated second image which is generated using the
original first image and the optical flow obtained by each
method. Three evaluation criterions of accuracy factor,
RMS error and correlation are adopted. These evaluation
values are shown in (8), (9), and (10).

1 NA 1
R= 3
max (N4, V) z; 1+ (ad?) ®

where /V, and /V; represent the number of actual and
ideal edge map point, ¢ is a scaling constant, and d is the
separation distance of an actual edge point normal to a line
of ideal edge point.

Y. ¥ xyn-1oy0)f
RMS error = M RN )
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where [(a:,y,t) and I’(:E,y,t) are the actual and
estimated images of size M X [V at time ¢.

D DT eyn-T]
Correlation = ,}E lel(xvyvf)-l—]‘,!E Yureso-it (10)

where (ZZemller and T{ZE el while
1(ar,y,t) are the actual and estimated image of size
MX N attime t.

Fig. 1. Six images of a heart Sequence (128x128)

(c) using standard multigrid
method

(d) Horn & Schunck method

Fig. 2. Thinned edges of original and estimated heart
images

This sequence (38 frames, 256x256) shows the pumping
process of a heart. We choose 6 frames (No. 5 to No. 10) of
the sequence and select their center parts (128x128) as
working images (Fig. 1). The heart motion in these images
is mainly a convergence motion. The movements of the
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upper right and the lower-left parts are larger than the
motion of other parts. To examine the effects of
displacement sizes on the optical flows, the frame No. 5 is
chosen as the first image and others are considered as the
second image. We use the accuracy factor defined in (8), to
investigate the edge location accuracy of heart in the
estimated second images. To extract the edges of heart in
the images first we binarized images are detected using
Prewitt filter, and thinned to become one pixel width (Fig.

2).

Fig. 3. Condensed images of Fig. 2

To become able to compare these results by eyes, their
condensed form are shown in Fig. 3 which it shows the
proposed algorithm is effective in the parts with large
motion. Applying the results to Eq. (8), Fig. 4(a) is obtained
which it shows the best results belong to proposed
algorithm. The comparison of three methods using RMS
error and correlation between the real and the estimated
second images of heart sequence images are shown in
Figures 4(b) and 4(c), respectively. According to these
comparisons here also generally the better results belong to
the proposed algorithm specially for image pairs which
contains large displacements.

The estimated optical flows between image frames Nos. 5
and 10 using Homn and Schunck, standard multigrid, and
proposed methods are shown in Fig. 5. Referring to this
figure the difference among the estimated flows for three
methods is the differences between the length of flows. The
estimated images of image frame No. 4 obtained by applying
the flows of Fig. 5 to the image frame No. 1 of heart
sequence, together with the image frame No. 10 of this

sequence are shown in Fig. 6.

pocuacy

RMS srar
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(c) correlation

Fig. 4. Comparisons of the original and estimated
second images using {a) assuracy factor, (b) RMS
error, and (¢) correlation

Fig. 7 shows the flow differences between the flows of
Fig. 5. According to flow differences shown in Fig. 7 the
most different flows are belong to the upper right and lower
parts of heart which have the largest movement. This
approves of the effectiveness of our method for large

motions.
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Nos. 5 and 10 of heart sequence using three optical
flow algorithm

(a) original images (b) using the proposed method

(c) using standard nultigrid
method
Fig. 6. The estimated and original images of image
frame No. 10 of heart sequence using three optical
flow algorithm

(d) Horn & Schunck method

IvV. CONCLUSIONS

The squared norm has been derived which minimizes
contributions to change in convected intensity. The
dominant terms in the squared norm represent divergent
motion and independent sources. If both of these can be set
to zero, then only the norm of the displacement is
considered. This squared norm is proportional to the image
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(a) difference between Figs. 5a  (b) difference between Figs. 5b
and Sc and 5c

Fig. 7. The differences between flows estimated by
our proposed algorithm and (a) Horn and Schunck,
(b) standard multigrid algorithms

intensity. Having a brief and general view on the results it
can be concluded that the proposed method having the
ability of better flow estimation in comparison with Hom
and Schunck’s method and a standard multigrid method. As
for heart sequence the correct flows are not known, we
applied the resulted flows to the first image and estimated
the second image, then compared the estimated second
image to the real second image using accuracy factor of
edges, RMS error and correlation factors. This heart
sequences the best results belonged to the proposed
algorithm. We can investigate the better flow estimation of
the proposed algorithm by observing the estimated flows
and image also. Applications for this method include the
measurement of blood flow from MRI images, in which
initially straight lines evolve according to the motion.
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