• 제목/요약/키워드: Local Networks

검색결과 1,303건 처리시간 0.025초

Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks

  • Lorincz, Josip;Capone, Antonio;Begusic, Dinko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.626-648
    • /
    • 2011
  • Energy consumption of wireless access networks is in permanent increase, which necessitates development of more energy-efficient network management approaches. Such management schemes must result with adaptation of network energy consumption in accordance with daily variations in user activity. In this paper, we consider possible energy savings of wireless local area networks (WLANs) through development of a few integer linear programming (ILP) models. Effectiveness of ILP models providing energy-efficient management of network resources have been tested on several WLAN instances of different sizes. To cope with the problem of high computational time characteristic for some ILP models, we further develop several heuristic algorithms that are based on greedy methods and local search. Although heuristics obtains somewhat higher results of energy consumption in comparison with the ones of corresponding ILP models, heuristic algorithms ensures minimization of network energy consumption in an amount of time that is acceptable for practical implementations. This confirms that network management algorithms will play a significant role in practical realization of future energy-efficient network management systems.

On Solving the Tree-Topology Design Problem for Wireless Cellular Networks

  • Pomerleau Yanick;Chamberland Steven;Pesant Gilles
    • Journal of Communications and Networks
    • /
    • 제8권1호
    • /
    • pp.85-92
    • /
    • 2006
  • In this paper, we study a wireless cellular network design problem. It consists of selecting the location of the base station controllers and mobile service switching centres, selecting their types, designing the network into a tree-topology, and selecting the link types, while considering the location and the demand of base transceiver stations. We propose a constraint programming model and develop a heuristic combining local search and constraint programming techniques to find very good solutions in a reasonable amount of time for this category of problem. Numerical results show that our approach, on average, improves the results from the literature.

동적 귀환 신경망에 의한 비선형 시스템의 동정 (Identification of Nonlinear Systems based on Dynamic Recurrent Neural Networks)

  • 이상환;김대준;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.413-416
    • /
    • 1997
  • Recently, dynamic recurrent neural networks(DRNN) for identification of nonlinear dynamic systems have been researched extensively. In general, dynamic backpropagation was used to adjust the weights of neural networks. But, this method requires many complex calculations and has the possibility of falling into a local minimum. So, we propose a new approach to identify nonlinear dynamic systems using DRNN. In order to adjust the weights of neurons, we use evolution strategies, which is a method used to solve an optimal problem having many local minimums. DRNN trained by evolution strategies with mutation as the main operator can act as a plant emulator. And the fitness function of evolution strategies is based on the difference of the plant's outputs and DRNN's outputs. Thus, this new approach at identifying nonlinear dynamic system, when applied to the simulation of a two-link robot manipulator, demonstrates the performance and efficiency of this proposed approach.

  • PDF

Monitoring social networks based on transformation into categorical data

  • Lee, Joo Weon;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • 제29권4호
    • /
    • pp.487-498
    • /
    • 2022
  • Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for network monitoring. In this paper, the degree and closeness centrality measures, in which each has global and local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical variable, in which several variables are transformed through classification rules, in a single chart. To monitor both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed procedure through a simulation study.

이동호스트의 수신신호를 이용한 유무선 혼합망에서의 TCP 성능 향상 (Improving the Performance of TCP over Wired-Wireless Networks Using the Received Signal Strengths of Mobile Host)

  • 김진희;권경희
    • 정보처리학회논문지C
    • /
    • 제13C권5호
    • /
    • pp.635-640
    • /
    • 2006
  • 유무선 혼합망에서 BS(Base Station : 기지국)에 Snoop을 이용한 지역 재전송기법은 무선망에서 패킷이 손실되면 빠른 복구를 가능하게 하지만 MH(Mobile Host:이동호스트)가 수신범위를 벗어나면서 생긴 패킷 손실 시에는 오히려 성능 저하의 원인이 될 수 있다. 따라서 본 논문에서는 MH가 수신범위를 벗어나면서 생기는 패킷 손실과 그로 인한 지역 재전송을 최소화하기 위해 MH의 ACK 패킷에 RSS(Received Signal Strengths:수신신호세기)를 나타내는 flag bit추가를 제안한다. BS는 RSS flag bit를 이용해서 패킷 전송여부를 결정함으로써 패킷 손실을 최소화하는 것이다. 시뮬레이션 결과 기존의 Snoop에 비해 TCP 성능이 향상됨을 확인할 수 있었다.

Simpler Efficient Group Signature Scheme with Verifier-Local Revocation from Lattices

  • Zhang, Yanhua;Hu, Yupu;Gao, Wen;Jiang, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.414-430
    • /
    • 2016
  • Verifier-local revocation (VLR) seems to be the most flexible revocation approaches for any group signature scheme, because it just only requires the verifiers to possess some up-to-date revocation information, but not the signers. Langlois et al. (PKC 2014) proposed the first VLR group signature based on lattice assumptions in the random oracle model. Their scheme has at least Õ(n2) ⋅ log N bit group public key and Õ(n) ⋅ log N bit signature, respectively. Here, n is the security parameter and N is the maximum number of group members. In this paper, we present a simpler lattice-based VLR group signature, which is more efficient by a O(log N) factor in both the group public key and the signature size. The security of our VLR group signature can be reduced to the hardness of learning with errors (LWE) and small integer solution (SIS) in the random oracle model.

Performance analysis of local exit for distributed deep neural networks over cloud and edge computing

  • Lee, Changsik;Hong, Seungwoo;Hong, Sungback;Kim, Taeyeon
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.658-668
    • /
    • 2020
  • In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.

왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템 (RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization)

  • 김선환;오성권
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

무선 센서 네트워크에서의 분산 컴퓨팅 모델 (Distributed Computing Models for Wireless Sensor Networks)

  • 박총명;이충산;조영태;정인범
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.958-966
    • /
    • 2014
  • 무선 센서 네트워크는 분산처리 환경을 제공해준다. 센서 노드들은 계산 능력, 네트워크 대역폭, 전력 등이 제한된 환경에서 배치되고 스스로 네트워크를 구성하여 수집된 데이터들을 싱크노드로 전송한다. 이런 전형적인 무선 센서 네트워크에서는 네트워크 패킷들 간의 충돌이 발생하며 이로 인해 네트워크 수명이 단축된다. 클러스터링과 네트워크 내부처리는 네트워크 내부의 패킷을 줄여 문제점을 해결한다. 제한된 에너지를 가진 센서 노드가 가능한 오랫동안 동작하게 하는 것이 큰 이슈이기 때문에 많은 연구들이 에너지 절약에 중점을 두고 진행되고 있다. 하지만 본 논문에서는 프로세싱 타임라인에 기반을 둔 협력 처리 모델을 제안한다. 이 모델은 처리의 검증, 총 실행시간의 예측, 무선 센서 네트워크에서 분산 처리에 필요한 최적의 노드 개수의 결정 등을 포함한다. 제안된 모델의 정확성을 실험을 통해 나타내고, 사례 연구로 이 모델이 분산처리 어플리케이션에 사용가능함을 보인다.

자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템 (Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition)

  • 김경태;최재영
    • 한국융합학회논문지
    • /
    • 제9권4호
    • /
    • pp.47-55
    • /
    • 2018
  • 본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.