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Abstract 

 
Energy consumption of wireless access networks is in permanent increase, which necessitates 
development of more energy-efficient network management approaches. Such management 
schemes must result with adaptation of network energy consumption in accordance with daily 
variations in user activity. In this paper, we consider possible energy savings of wireless local 
area networks (WLANs) through development of a few integer linear programming (ILP) 
models. Effectiveness of ILP models providing energy-efficient management of network 
resources have been tested on several WLAN instances of different sizes. To cope with the 
problem of high computational time characteristic for some ILP models, we further develop 
several heuristic algorithms that are based on greedy methods and local search. Although 
heuristics obtains somewhat higher results of energy consumption in comparison with the ones 
of corresponding ILP models, heuristic algorithms ensures minimization of network energy 
consumption in an amount of time that is acceptable for practical implementations. This 
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confirms that network management algorithms will play a significant role in practical realization 
of future energy-efficient network management systems.  
 
 
Keywords: WLAN, energy-efficiency, heuristic algorithm, optimization, green networking 
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1. Introduction 

Power consumption of the Information and Communication Technologies (ICT) sector has 
become a key issue in the last few years, due to rising energy costs [1][2] and serious 
environmental impacts on greenhouse gas emissions [3]. Pollution and energy savings are 
keywords that are becoming more and more of interest to people and governments, and the 
research community as well are more sensitive towards these topics in the last years. An 
important part of the ICT consumption, the energy consumption of wireless access networks is 
rapidly increasing [4] and in some countries it accounts for more than 55% of the whole 
communication sector [5]. Such increase also accounts to a non-negligible part of the operational 
expenditures (OPEX) of network equipment owners. Moreover, growth of data rates in wireless 
networks by a factor of roughly ten every five years and an increase in the number of users, 
result in a doubling of the energy consumption of wireless network infrastructure every 4–5 
years [6].  

With rising energy prices, base stations (BSs) as the most significant energy consumer in the 
wide area wireless access networks contribute up to 50% of the total OPEX, especially if 
operators have many diesel fueled off-grid BS sites [7]. In addition, the number of enterprise 
deployments and overall number of individual access points (APs) in small and medium size 
wireless local area networks (WLANs) increases exponentially every year [8]. Although average 
BS energy consumption is much higher in comparison to those of APs, vast numbers of WLAN 
network devices installed worldwide contribute to enlargement of the energy consumption in 
wireless access networks. Therefore, development of a new generation of wireless access 
networks characterized with significantly higher energy efficiency is a necessity. 

For having “greener” wireless access networks not only requires us to develop more energy-
efficient hardware components, but to take a holistic view of the complete wireless access 
network through implementation of energy-efficient network management. This means that 
network devices must adopt their on/off state and level of transmitted (Tx) power in accordance 
with traffic patterns. To achieve this for large-scale wireless networks without hampering 
coverage and/or client performance, management of network devices activity and Tx power 
from a centralized location seems to be a promising approach.  

But, energy-efficient network management requires appropriate algorithms capable of 
exploiting minimal network resources at any moment, while assuring to active users satisfactory 
level of service quality. Therefore, in this paper, we present several versions of heuristic 
algorithms based on a combination of greedy approach and local search methods. While 
ensuring at any moment coverage and capacity demands of active users, we embedded in 
developed algorithms features: line capability of offering full coverage of service area (SA) and 
limitations in frequent variations of network devices activity. Also, a comparison of obtained 
results in terms of energy savings and computational time has been performed between heuristic 
algorithms and equivalent integer linear programming (ILP) models.  

The rest of the paper is organized as follows: in Section 2, we present related work dedicated 
to improving energy efficiency of wireless access networks. Section 3 gives an overview of 
analyzed network instances and explains approximations of real traffic patterns. Formulation of 
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ILP models and heuristic algorithms has been presented in Section 4 and Section 5 respectively. 
Numerical results obtained have been discussed in Section 6 and in Section 7, we give some 
concluding remarks. 

2. Related work 
Topics dedicated to reductions of energy consumption in wireless access networks have attracted 
the attention of the research community very recently. Some initial ideas and results for the case 
of wide area wireless access networks can be found in [9][10][11][12][13][14] [15], while 
energy saving approaches in WLANs have been investigated in [16][17][18][19][20][23]. 
Authors in works [9] and [10] showed that it is possible to switch off some cellular network cells 
[9] and UMTS Node B’s during low-traffic periods, while still guaranteeing quality of service 
constraints in terms of blocking probability and electromagnetic exposure limits [10]. The 
impact of deployment strategies on the power consumption of mobile radio networks 
considering layouts featuring varying numbers of micro BSs per cell in addition to conventional 
macro sites has been investigated in [11]. In [12], the authors evaluate the energy savings that 
can be achieved with the energy-aware cooperative management of the cellular access networks 
of two operators offering service over the same area. The total and per user power consumption 
for three different wireless technologies including, namely fixed WiMAX, mobile WiMAX and 
UMTS, is investigated in paper [13]. In paper [14], the relationship between the energy 
efficiency and spectrum efficiency in a multi-cellular network is obtained, and the impact of 
multi-antenna on the energy efficiency of cellular networks is analyzed. Dynamic adjustment of 
wireless topology and the radiated power using methods such as bandwidth shrinking and cell 
micro-sleep in accordance to load have been investigated in work [15].  

Furthermore, a first attempt for adoption of resource on-demand (RoD) strategies that can 
reduce energy consumption of centrally managed WLANs was published in a significant work 
[16]. Authors in [17] develop an analytical model for assessment of the effectiveness of RoD 
strategy introduced in [16]. The proposed analytical model is used for studying two simple on-
demand policies that based on instantaneous WLAN parameters, select the appropriate number 
of APs to activate, thus trying to avoid wasting energy on underutilized APs. According to both 
papers [16] and [17], ample room for possible energy savings in large-scale WLANs exists. In 
article [18] authors propose solutions in the area of energy sustainable WLAN mesh networks 
through introduction of AP solar powering, also discussing the shortcomings of IEEE 802.11 
when used in these types of networks.  

In our positioning paper [19], for the first time principles of ILP are used to show possible 
reductions of instantaneous power consumption in real size WLANs through implementation of 
energy-efficient network management. We extended obtained results in work [20] through 
development of new ILP models, indicating significant savings in monthly energy consumption 
on the level of complete WLANs. Actually, we manage to modulate energy consumption of 
WLANs according to the realistic traffic pattern, also considering important factors like: full 
coverage of SA, negative effect of frequent variations on activity of network devices, influence 
of interference among network elements and capacity limitations of network devices.  

Although an optimization approach based on ILP models presents a powerful tool for 
modeling possible energy savings in wired [21][22] and wireless networks [19][20], the ILP 
approach is not without drawbacks. Due to NP-hardness of optimization models proposed in our 



630                                  Lorincz et al.: Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks 
 
recent work [20], computational time of some ILP models becomes very long. Since long 
computational time reduces the possibility for practical implementation of ILP models in real-
time management systems, in the paper [23] we present an initial version of heuristic algorithm  

 
Fig. 1. a) Positions of APs and UTs inside medium size network instance, b) Possible wireless 

connections between APs and UTs inside medium size network instance 

 
 
 
 
 
 
 
 
 
 
 
 
 
       
          Table 1. Properties of analyzed WLAN instances 

Size of 
network 
 instance 

No. 
of 

UTs 
(TPs) 

No. 
of  

APs 
(CSs) 

Dimensions 
of SA  

(m x m) 

Small 143 13 506 x 506 
Medium 671 61 1.182 x 844 

Large 1672 152 1.689 x 1.689 
Extra-large 3069 279 2.196 x 2.196 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Allocation of APs and UTs inside: a) small, b) large and c) extra-large network instance 
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for energy-efficient management of WLAN resources. According to our knowledge, this is the 
first algorithm for management of on/off activity and Tx power of APs in large-scale WLANs. 
The development of such an algorithm was a necessity, since all previous research lacks 
algorithms capable of adapting energy consumption of WLANs to actual traffic load. In order to 
further improve the management properties of the initially proposed algorithm, we develop in 
this paper a few extended versions of the heuristic algorithm. 

Table 2. Dependence of instantaneous AP power consumptions and PHY rates on level of Tx power    

 

      Table 3. Time periods for traffic approximation and   
                                parameters of path-loss model 

Traffic approximation Path-loss model 
values 

Time  
period 

t 

tT  
[h] 

1+tT  
[h] tt

t

TT
T
−
=∆

+1

 

[h] 

% of  
active  
users 

λ =0,122 m 
Xσ =6,23 dB 

d0=1 m 
1 00 09 9 20 n = 2,7 
2 09 12 3 100 f=2,4 GHz 
3 12 15 3 70 σ=13 dB 
4 15 18 3 85 dB 40)( 0 =dP pl  
5 18 24 6 55 Prtr(d)= - 83 dBm 

 

   Fig. 3. Approximation of real traffic pattern 

3. Analyzed network instances and traffic patterns 
For testing energy management strategies introduced in the paper through ILP models and 
heuristic algorithms derived later on, we tried to emulate the topology of widespread IEEE 
802.11g WLANs. For that purpose we use for analyses four different WLAN network instances, 
assuming that APs in each instance work in infrastructure mode. As specified in Table 1, 
instances are named as: small, medium, large and extra-large instances due to differences in the 
size of SA and number of APs and user terminals (UTs). Allocation of APs and UTs inside SA 
of: small, medium, large and extra-large instance have been presented in Fig. 1-(a), 2-(a), 2-(b) 
and 2-(c) respectively. Such network instances can correspond to various real WLANs, which 
deployments can be seen in everyday life. For example, small and medium instances resemble 
some office or faculty building WLANs, while large and extra-large instances can be identified 

Level 
of Tx 
power 

k  

Baseline 
power 

consum. 
Pb 

 (W) 

Additional 
power 

consum. 
 Pk  
(W) 

Average 
power 

consum. 
P(k)  
(W) 

Tx power 
PTk 

(mW/dBm) 

Distance (coverage rings) 
r=1 

(0 m–40 
m) 

r=2  
(40 m–80 m) 

r=3  
(80 m–120 m) 

Average PHY rates 
Rjkr (Mb/s) Rjkr (Mb/s) Rjkr (Mb/s) 

1 5 7 12 100/20 Rj11=54 Rj12=36 Rj13=18 
2 5 5 10 75/18,8 Rj21=48 Rj22=24 Rj23=12 
3 5 3 8 50/17 Rj31=36 Rj32=18 Rj33=9 
4 5 1 6 25/14 Rj41=24 Rj42=12 Rj43=6 (N/A)  
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with WLANs of a travel terminal like train station or airport complex. To be more consistent 
with real WLAN deployments, we assume that larger network instances have different allocation 
densities of APs in different coverage areas (CAs), e.g. medium instance has three CAs (Fig. 1-
(a)). This is similar to real network topologies where generally, a higher number of APs have 
been allocated inside those CAs where a higher number of UTs is expected.  

In order to simulate changes of traffic load during one day, the discrete function fA(t) 
presented in Fig. 3 is used for approximating normalized daily traffic pattern fR(t) of a realistic 
WLAN. According to Table 3 and Fig. 3, approximation is done using five different time 
periods t. In the paper [20], we experiment with higher and lower numbers of approximation 
time periods and we show that selection of five time periods presents the best trade-off between 
computational accuracy and computational time of ILP models. We additionally assume no time 
gap between subsequent time periods, also neglecting somewhat unequal traffic patterns between 
working and weekend days. Durations of time periods are expressed in hours (h) as the time 
difference between ending (Tt+1) and starting time (Tt) of some time period t. The percentage of 
active users in each time period with corresponding durations can be found in Table 3.  

Generation of network instances presented in Fig. 1 and 2 have been done using a specially 
developed software solution written in C++ programming language. Such instance generator 
(IG) performs generation of network instances according to a wide range of initially defined 
input parameters such as: size of SA, number of network and user devices, guaranteed PHY rates 
to users, sensitivity threshold, number and duration of time periods, etc. The IG generates data of 
network instances in the appropriate forms, which are used as input data for CPLEX solver or 
heuristic algorithm. In order to model radio propagation characteristics of analyzed WLAN 
instances, IG uses a long distance path-loss model with log-normal fading [24][25] defined as  

                                            [dB] log10)()(
0

100        X
d
dndPdP plpl σ+







+=                               (1) 

where )( 0dPpl
is the average value of the path loss at close-in reference distance d0, n is path-loss 

exponent and Xσ is a zero-mean Gaussian distributed random variable having standard deviation 
σ. Parameters of the path-loss model used by IG are presented in Table 3, and these values 
correspond to those of real WLANs [24][25]. We assume that a potential wireless link exists 
between AP and UT located at Euclidean distance d from AP, only if the signal strength at the 
position of UT satisfies the next criteria: 
                                                  [dBm])()(                  PdPPdP rtrplTkr ≤−=                                   (2) 
where PTk is Tx signal strength (in dB) of AP and Prtr is power sensitivity threshold of each UT 
equal to -83 dBm (Table 3). According to these criteria, straight lines on Fig. 1-(b) present 
potential wireless links among APs and UTs of medium size WLAN instance, and similar 
visualization of potential wireless links can be obtained for other network instances presented in 
Fig. 2.  

4. Formulation of optimization models 
To formulate the energy optimization problem, we assume that instantaneous (average) power 
consumption of wireless network devices can be expressed as a function of Tx power (PTk). If a 
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wireless network device transmits a radio signal with the Tx power PTk, baseline power 
consumption Pb increases for amount of Pk resulting in instantaneous consumption equal to 

[m])(                        PPkP kb −=                                   (3) 
Table 2 shows considered values of AP baseline Pb and additional power consumptions Pk for 
different Tx power levels PTk. Also, we assume maximal CA of each AP equal to 120 m, which 
is a typical value for moderately obstructed indoor WLAN environments. Inside the CA of each 
AP, we considered three circular coverage rings with borders: 0 ≤ d ≤ 40 m, 40 m < d ≤ 80 m and 
80 m < d ≤ 120 m. All users located in some coverage ring will have the same PHY rate, which 
can be treated as the average transmission rate Rjkr (Mb/s) of the corresponding CA. Table 2 
presents values of PHY rates in each coverage ring for different Tx power levels. Values are 
selected according to practical measurements of IEEE 802.11g AP PHY rates [26]. To 
mathematically model the radio coverage of SA having already deployed APs, we take into 
account possible positions of UTs called test points (TPs) and all positions of the APs called 
coverage sites (CSs). Let: 
• j∈J ={1, ..., m} be the set of m CSs hosting APs, 
• i∈ I ={1, ..., n} be the set of n TPs where UTs are placed, 
• t∈H ={1, ..., p} be the set of p different time periods during one day, 
• r∈D ={1, ..., e} be the set of e coverage rings (areas) around each AP, 
• k∈K ={1, ..., l} be the set of l different Tx power (PTk) levels, 
• i∈ I(j,k,r,t) be the subset of TPs covered with (j, k) combination in r-th coverage ring during 

time period t. 
The problem is to find in each time period t a set of powered-on CSs with minimal power 

consumption satisfying capacity demand dit (in Mb/s) of all active TPs. Such a problem is a 
combination of minimum set covering problem and capacitated facility location problem and to 
formulate the problem we introduce three binary decision variables: 
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Furthermore, 0–1 incidence matrix containing coverage information of all TPs is defined as 
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The first ILP optimization model named as Model Energy (ME) can be formulated as 
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{ } { } { }pHtmJjy jt ,...,1 ,,...,1 1,0 =∈∀=∈∀∈          (11) 
{ } { } { } { }pHtlKkmJjx jkt ,...,1,,...,1 ,,...,11,0 =∈∀=∈∀=∈∀∈        (12) 
{ } { } { } { } { } ,...,1,,...,1 ,,...,1  ,,...,11,0 pHtlKkmJjnIiwijkt =∈∀=∈∀=∈∀=∈∀∈      (13) 

Relation (4) is an objective function that minimizes monthly energy consumption of a 
complete WLAN. Constant C equal to 0.03 (1/month) in the objective function is used for 
transformation of daily energy consumption (Wh/day) in the monthly energy consumption 
(kWh/month). We use this unit for expressing the energy consumption of a wireless network, 
since kilowatt-hour (kWh) is the billing unit preferred by utility companies for charging 
consumed electrical energy. Constraints (5) are coherence constraints stating that each CS (AP) 
can use at any moment at most one Tx power level. Coverage constraints (6) assure that all TPs 
are within the CA of at least one CS and connection constraints (10) states that every TPi can be 
connected to only one CS at any time. Since total capacity of each powered on CS is shared 
between connected TP(s), capacity constraints (7) prevents that overall TP demand(s) dit in the 
r-th coverage ring exceed PHY rate Rjkr of that ring. Best power selection constraints (8) make 
implicit assignment of TPs to the best active CS in terms of the signal strength. According to 
configuration constraints (9), TP i can be assigned to a CS j only if that CS is active and 
configured with k-th transmit power level. Finally, for decision variables yjt, xjkt and wijkt, 
constraints (11), (12) and (13) are the integrality constraints. All described constraints must be 
satisfied for each period t.  

To mathematically model full coverage of the SA with radio signal during all the day, we 
introduce a concept of virtual points called measurement points (MPs), where 
• s∈S ={1, ..., u} is the set of u MPs inside the SA.  
The MPs serve as probe points in which minimal level of received signal strength according to 
relation (2) must be satisfied. With dense allocation of MPs having a regular grid structure, full 
coverage of the SA can be assumed. By adding to the previous model ME a new constraint  

{ } { }pHt uSstsxb
j k

jktsjk ,...,1,,...,1:),(1 =∈∀=∈∀≥∑∑         (14) 

results with a new ILP model named as model energy/full coverage (ME/FC). Since full 
coverage constraints (14) mandate that every MP be covered with the radio signal received from 
at least one CS during each time period, those constraints assure complete coverage of the SA. 
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In addition to presented ILP models, we develop an ILP model that reduces frequent 
variations in on/off activity of CSs between subsequent time periods. We introduce this model 
since large variations in network configuration from one time period to the next one may have a 
negative impact on signaling overheads and perceived service quality. One approach in reducing 
this impact can be through introduction of an energy penalty for powering on a new CS that was 
turned off in the previous time period. To mathematically express influence of this penalty, we 
introduce a new binary variable defined as  



 −=+ otherwise

periodtimesubsequentinactivatedisCSthjifz jt 0
1

1  

A new objective function considering the penalty for powering on CSs in a subsequent time 
period can be formulated using this binary variable as  
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By substituting objective function (4) of previous models ME and ME/FC with objective 
function (15) and by adding to the previous constraints (5–13) the new ones defined as 

{ } { }1,...,1,,...,1:),(11 −=∈∀=∈∀−≥ ++ pHt mJjtjyyz jtjtjt        (16) 
{ } { } { }pHt mJjz jt ,...,1,,...,11,0 =∈∀=∈∈          (17) 

a new mathematical model named as Model Energy Limited Variations (MELVs) has been 
developed. In the objective function (15), E is the value of energy penalty equal to 0.003 
kWh/month. For calculation of this value we exploit energy consumed by network device during 
booting, assuming that powering on of new CS repeats among subsequent time periods for each 
day during one month. All presented optimization problems belong to the NP-hard category, 
since each of them includes as a special case the capacitated facility location problem, known to 
be NP-hard [27]. 

5. Heuristic algorithms 
Another approach for solving the problem of energy-efficient network management is based on 
development of a heuristic algorithm. Besides exact algorithms for ILP problems like branch and 
bound, cutting plane, etc. that finds the optimum or at least bounds it, other algorithms like 
heuristic algorithms only find some (hopefully good) solution. Nevertheless, heuristics are 
important in practice because efficiency is often a high priority. An efficient heuristic algorithm 
is the one which determines a solution within a reasonable time using reasonable resources. For 
the types of problems considered in this work, a typical reasonable time frame is a few hours and 
a typical reasonable resource is a high-end personal computer (server).  

Our heuristic approach has been spatially tight to the problem tackled by previous ILP 
(mathematical) models, focused on energy consumption minimization of large-scale WLANs. 
Actually, for each of the proposed ILP models we develop corresponding heuristic algorithms. 
In this way, we can compare obtained results in terms of computational time and accuracy. 
Therefore, the first heuristic algorithm named as Heuristic-Model Energy (H-ME) works in the 
same manner as the previously introduced ME, tending to minimize monthly energy 
consumption of the entire network. The second heuristic algorithm named as Heuristic-Model 
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Energy/Full Coverage (H-ME/FC) optimizes monthly energy consumption while ensuring full 
coverage of the SA. Heuristic-Model Energy Limited Variations (H-MELVs) is the last proposed 
heuristic algorithm, which as an MELV model offers energy-efficient network management, also 
limiting frequent variations in the activity of network devices.  

Given an instance with a set of CSs, TPs and corresponding traffic demands dit (Mb/s), the 
aim of each heuristic algorithm is to build up a solution S that offers the lowest energy 
consumption of the network in each time period. During this process, different heuristic 
algorithms must take into account different constraints, like guaranteeing full SA coverage or 
limiting frequent on/off changes of network devices. Generally, each of the proposed heuristic 
algorithms is composed of two phases. In the first one, we adopt a greedy approach in order to 
build up a feasible solution S. The greedy is an algorithm that finds the solution (locally 
optimum) through a sequence of partial decisions, without ever coming back to the taken 
decisions in order to modify them. Generally, greedy algorithms have high computational 
efficiency, but they do not assure reaching of the global optimum. Local search (LS), instead, is 
useful to improve the solution of the greedy algorithm, looking inside a neighborhood of the 
solution. Therefore, in the second phase, LS starts with an initial solution S and iteratively 
moves to a best candidate within the current neighborhood until no further improvement can be 
achieved. If this happens, we memorize this solution; otherwise we keep the greedy solution.  

5.1 Greedy phase 
The generic structure of the first H-ME algorithm is:  
 

Algorithm: Generic structure of H-ME heuristics 
1: PROCEDURE Heuristic_ME (I,J,K,P) 
2:    S=∅; 
3: BuiltUpSolution (I,J,K,P,S) 
4: LocalSearch (S); 
5: RETURN (S) 
6: END Heuristic_ME 

 

where meaning of the sets: I, J, K, and corresponding indexing are the same as the ones 
introduced in the previous Section. With P, we denote for each (j, k) pair, subset of TPs covered 
with that (j, k) pair. In the P, for each P_(j, k) combination, TPs are sorted in decreasing order of 
the signal strength received from that (j, k) combination. Additionally, S is the set of (j, k) 
combinations, with j∈ J and k∈K, that belongs to a final solution. Therefore, (j, k) 
combinations in S define which CS j transmitting at Tx power level k will be powered on during 
some time period t. 

Each phase of proposed heuristic algorithms is characterized with the related generic 
function. The BuiltUpSolution function in the greedy phase develops, after sequence of 
iterations, a feasible starting solution S. The pseudo code of the greedy phase is:  

 
Algorithm: Greedy phase strategy for H-ME heuristics 
1: PROCEDURE BuiltUpSolution_ME (I,J,K,P,S) 
2:       Covered_TPs = ∅; 
3: WHILE Covered_TPs ! = ALL_TPs 
4:       Best_Pair = BestPairselection_ME (J,K,P,S); 
5:       S = S U Best_Pair; 
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6:      Covered_TPs = Covered_TPs U TPs_PairToAdd 
7:    TPs_Association (S,P); 
8:   Try_Decrease_Power (S);  
9: END BuiltUpSolution_ME 

 

At the beginning of the greedy phase, the BuiltUpSolution function creates and puts to null the 
set of all active TPs that are covered with the current solution S during time period t. Then it 
invokes the BestPairSelection function. This function looks for a (j, k) pair that covers the 
highest number of active TPs which are not yet served. A pair that satisfies such criteria will be 
added to the solution S at the end of each iteration of the BuiltUpSolution function. The pseudo 
code of the BestPairSelection function is: 
 

Algorithm: TPs coverage strategy  
1: PROCEDURE BestPairSelection_ME(J,K,P,S)  
2:   DO FOR j in J, k in K 
3:       Capacity_(j,k) = 1; 
4:   Covered_new_TPs_(j,k) = 0; 
5:   DO FOR i in P_(j,k) 
6:      IF Capacity_(j,k)-Demand_(i)/Rate[k][r] > 0 
7:        IF i is not yet covered in S 
8:          Covered_new_TPs_(j,k) = Covered_new_TPs_(j,k)+1; 
9:      Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 
10:        FI 
11:        IF i is already covered in S by the same j 
12:                Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 
13:        FI 
14:        IF i already covered in S by different j 
15:           IF powerRX_i_(j,k) > powerRX_i_(j,k in S) 
16:                Capacity_(j,k) = Capacity_(j,k)-Demand_(i)/Rate[k][r]; 
17:          FI 
18:        FI 
19:      FI 
20:    OD    
21:  OD 
22:  SELECT (j,k) that has max (C*Covered_new_TPs_(j,k)); 
23:  RETURN  (j,k);        
24: END BestPairSelection_ME 

     

In the first step, the BestPairSelection function puts normalized capacity of every (j, k) pair to 1 
(maximum) and sets the number of TPs that can be covered by that pair to null. Then, the 
function explores every possible (j, k) pair and for each pair function calculates the number of 
currently uncovered TPs. Selection of TPs that can be served by analyzed (j, k) pairs is based on 
order given by P_(j, k), since TPs receiving better signal from that (j, k) pair have priority during 
selection. In order to accept a TP, a (j, k) pair must have enough free capacity to satisfy the 
capacity demand of the TP that will be covered. We define capacity limitation of (j, k) pair as  

           ( ) 0
),(

),_( >







−

rkRate
iDemandkjCapacity         (18) 

where Demand(i) corresponds to dit and Rate(k, r) to Rjkr. Therefore, the BestPairSelection 
function starts to select the first TP in the P_(j, k). If this TP is not yet covered by another pair in 
S and if this TP can be served without breaking the capacity constraint (18), the function 
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increases the number of covered TPs of the (j, k) pair by one. Also, the function reduces the 
remaining capacity for the value of TP demand normalized with the proper PHY rate. After that, 
the function proceeds to the next TP in P_(j, k), repeating the same check about the possibility of 
covering that TP.  

If CS j already covers the TP that belongs to P_(j, k), but with a different power level k, the 
function applies only a reduction of the normalized capacity. On the other hand, if some 
previous (j, k) combination already covers a TP, but from the newly analyzed pair that TP 
receives better signal strength, only an update of the normalized capacity of the new pair has to 
be done. In that case, an increase in the number of newly covered TPs will not be performed 
since this TP has been already covered. A reduction of normalized capacity and increase of 
covered TPs does not happen in the situation when an analyzed TP has been already covered by 
some (j, k) combination, from which it receives power that is higher than the power level of the 
new combination. 

Finally, the BestPairSelection function selects a (j, k) pair that maximizes the number of 
newly covered TPs. The chosen (j, k) combination is then introduced by the BuiltUpSolution 
function in the solution S. Moreover, the algorithm updates the number of covered TPs with 
those served by the just added (j, k) pair and verifies does demands of all active TPs in the 
analyzed time period have been satisfied by added (j, k) combinations in S. If this situation does 
not occur, the algorithm repeats execution of the BestPairSelection function until solution S 
satisfies capacity demands of all TPs active in some time period t, through adding at each step a 
new (j, k) pair. 

When BuiltUpSolution adds a new (j, k) pair in the solution S, the algorithm invokes the 
TPs_Association function. This function enables, for every TP in solution S, a connection with  
the (j, k) pair from which the TP receives the best power. In order to reduce the Tx power of (j, 
k) pairs in S and to more efficiently explore CSs capacity, the greedy phase ends with the 
Try_Decrease_Power function. This function tries to decrease the selected power level k, 
keeping satisfied the same constraints about capacity (7) and best received power (8). Reasons 
for introducing this function in the greedy phase can be found in significantly better results 
obtained in terms of monthly energy savings if the Try_Decrease_Power function has been 
present in the greedy phase. Due to space shortage, pseudo code of the TPs_Association and 
Try_Decrease_Power function have not been presented for any proposed heuristic algorithms.  

For the case of H-ME/FC algorithm, a generic structure is defined with next pseudo code:  
 
 

Algorithm: Generic structure of ME_FC heuristics 
1: PROCEDURE Heuristic_ME/FC (I,J,K,P) 
2:      S=∅; 
3:   BuiltUpSolution_ME/FC (I,J,K,P,MM,S) 
4:   LocalSearch (S); 
5:   RETURN (S) 
6: END Heuristic_ME/FC 

 

 
where the H-ME/FC algorithm has for the input parameters the same sets that we have 
described for the previous algorithm H-ME, with the exception of the parameter denoted 
as MM. The MM has the same meaning as P, but instead of TPs the MM is related to MPs. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011                                         639 
 
 
Therefore, MM defines for every (j, k) pair, a subset of MPs that are covered with the wireless 
signal of that (j, k) pair. The greedy phase of the H_ME/FC algorithm is:  

Algorithm: Greedy phase strategy for H-ME/FC heuristics 
1: PROCEDURE BuiltUpSolution_ME/FC (I,J,K,P,MM,S) 
2:       Covered_TPs = ∅; 
3:       Covered_MPs = ∅; 
4:   WHILE Covered_TPs!=ALL_TPs || Covered_MPs != ALL_MPs 
5:           Best_Pair = BestPairselection_ME/FC (J,K,P,S); 
6:       S = S U Best_Pair; 
7:       Covered_TPs = Covered_TPs U Tps_PairToAdd 
9:       Covered_MPs = Covered_MPs U MPs_PairToAdd 
10:   TPs_Association (S,P); 
11:   Try_Decrease_Power (S);  
12: END BuiltUpSolution_ME/FC 

 

Therefore, the solution created by the BuiltUpSolution_ME/FC function has to cover not only all 
active TPs in the analyzed time period, but also all MPs inside the SA. The function continues to 
add a new (j, k) pair in S only if both of these two constraints have been satisfied. For this reason 
we have an 'OR' (||) operator in the condition deciding about exit from the loop that offers final 
solution. Similar to the previous H-ME algorithm, the (j, k) combination added in solution S at 
every algorithm step is selected by the function that is now called BestPairSelection_ME/FC 
function. In order to introduce in this function the possibility to count the number of MPs that 
are uncovered within S, we perform some modification of the previous BestPairSelection_ME 
function. Previously, the BestPairSelection_ME function selects, among all not yet chosen (j, k) 
pairs, the one which has the maximum increment of TPs not covered within solution S. The new 
function calculates for every (j, k) pair the number of uncovered TPs, also considering the 
number of uncovered MPs. In order to perform this, we need to memorize at every step which 
MPs are already covered in solution S. This operation is simpler than the check made for TPs. 
This is a consequence of the fact according to which MPs do not have to satisfy capacity and 
best power selection constraints. The algorithm needs to guarantee that all MPs in the final 
solution S have been covered with wireless signal during each time period.  

Although the H-MELV algorithm needs to penalize powering on of new CS in subsequent 
time periods, the generic structure of its greedy phase is equal to those of the H-ME algorithm. 
Therefore, H-MELV starts with time period one (t=1) and calculates the solution S (t=1). Then 
it calculates solution S for time period two (t=2), comparing the previous solution with this last 
one. The process is performed for each pair of solutions S that belong to subsequent time 
periods. This comparison is done since the H-MELV algorithm must introduce a mechanism of 
penalty that prefers selection of those CSs that are already active in the previous time period. To 
do this, the value of quantity denoted as C that equals to 1 in the BuiltUpSolution function of the 
H-ME algorithm must be adopted for the case of H-MELV heuristics.  

Actually, selection of the (j, k) pairs performed by the BestPairSelection_MELV function is 
similar to the BestPairSelection_ME. When all (j, k) combinations that are not in S have 
information about the number of uncovered TPs that can be served by each pair 
(Covered_new_TPs_(j,k)), the BestPairSelection_MELV function selects the (j, k) combination 
having the highest number of uncovered TPs. Before this selection, BestPairSelection_MELV 
multiplies Covered_new_TPs_(j,k) with a quantity C. The value of this quantity depends on the 
appearance of the CS j in the solution S of the previous time period. In this way, it is possible 
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to privilege those (j, k) pairs to have powered on CS throughout time periods. The 
appropriate value of quantity C equals to 0,6–0,8 for the cases of already powered CS 
in the previous time period. On the other hand, for those CSs that are not powered on in 
the previous time period, the selected value of quantity C equals to 0,3–0,4. Those values 
of C are selected since an experiences obtained during multiple testing of heuristics 
shows best results for exactly those values.  

5.2 Local search phase 
During the second phase, the LocalSearch (LS) function is used to improve the feasible starting 
solution S obtained at the end of the greedy phase. The LS starts from an initial solution S and 
moves to a better solution in its neighborhood until it finds a local optimum, i.e., a solution that 
does not have a better neighbor. A neighborhood is simply a set of solutions that are found by 
applying an appropriate transformation (move) to the current solution. In other words, LS 
chooses an initial solution S and searches for a set S' in solution space Q(S) with f(S')<f(S). If 
none exists, LS stops and S is a local optimum solution. Otherwise it sets S=S' and repeats the 
described search. We have indicated with S' a set of (j, k) pair(s) that are developed from S 
through addition of a CS that is neighbor to existing CS j in S, and through removal of this CS j. 
Solution space Q(S) is the set of all possible neighborhoods so that Q(S)={S':S'=S U {j} for j in 
J\S}U{S':S'=S\{i} for i in S}. In our case, a neighbor(s) of a CS in the solution S are those CS(s) 
that are able to cover at least some parts of that CS CA.  

The group of all possible neighbors for every CS is calculated before the LS phase and is 
denoted with N. For every CS j, the subset of all possible neighbors has been indicated as N(j). 
The pseudo code of the LS is: 

 
 

Algorithm: Common LS strategy for each of heuristic approaches 
1: PROCEDURE LocalSearch(S,N,K) 
2:   DO FOR j in S 
3:   Counter=0; 
4:     DO FOR jj in N(j) until Counter<NearMax 
5:      DO FOR k in K 
6:  G(S) = S\{(j,k):j=j}U{(jj,k)} 
7:         S’ = BuiltUpSolution_LS(G(S)); 
8:         IF S’ feasible  
9:      IF Energy_Consump (S’)<Energy_Consump(S) 
10:             S = S’; 
11:             TPs_Association(S); 
12:           FI 
13:           ELSE  
14:             QUIT FOR k 
15:         FI 
16:       OD 
17:       Counter=Counter+1; 
18:    OD 
19:  OD 
20: END Local_Search 

 

As input, the LS takes the previous solution S obtained at the end of the BuiltUpSolution 
function, the set of all possible neighbors N and the set of power levels K. At the beginning, LS 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011                                         641 
 
 
selects for every CS j in S a neighbor and removes the corresponding CS from the solution S. 
Since such move has changed the previous solution and the possible association with TPs, it is 
necessary to update connections and to check if a feasible and better solution S’ can be achieved 
by selecting (j, k) pairs from G(S). With G(S), we indicate the subset of all possible (j, k) pairs 
generated starting from S, on which a described move can be applied. G(S) is generally different 
from S', because at this point, we do not know which (j, k) pair will be included in S', what Tx 
power level the newly-added CS will have and if this solution will be feasible.  

To generate S’, LS assigns to the added neighbor the highest power level and invokes the 
BuiltUpSolution_LS function. This function is very similar to previously described 
BuiltUpSolution functions. The only difference between them can be found in the way 
BuiltUpSolution_LS selects (j, k) combinations when it creates S'. Instead of choosing among all 
possible (j, k) pairs, the BestPairSelection_LS function explores only (j, k) pairs inside G(S). 
Every time the algorithm needs to calculate solution S’ from G(S), it has to satisfy the traffic 
demand of TPs for the case of H-ME and H-MELV heuristics and also coverage of all MPs for 
H-ME/FC scenarios.  

If a generated solution S’ is unfeasible or if selected (j, k) pairs in S’ can satisfied the traffic 
demand of active TPs, but with a higher energy consumption than (j, k) pairs in S, solution S’ 
will be discarded. Otherwise, if the solution S’ is feasible and results with lower energy 
consumption in comparison with energy consumption of S, the algorithm memorizes these newly 
discovered (j, k) pairs. In addition, the TPs_Association(S) function algorithm tries to achieve 
further improvement in minimization of energy consumption through reduction of Tx power 
level for the added neighbor until the minimal level of Tx power for this CS can be reached. At 
that point, LS stops the construction of a new solution, memorizes the recently found (j, k) 
configuration and repeats this search for every CS inside the set of neighbors. Once LS reaches 
the last member of the neighbor set N(j), it generates the final solution for the selected time 
period and the heuristics proceed with finding a solution for another time period until all time 
periods have been analyzed. 

Besides the presented heuristic approaches, we experiment with some additional 
modifications related to each of the derived heuristic algorithms. These result with development 
of modified versions of heuristics denoted as Heuristic Modified-Model Energy (HM-ME), 
Heuristic Modified-Model Energy/Full Coverage (HM-ME/FC) and Heuristic Modified-Model 
Energy Limited Variations (HM-MELVs). Generally, the greedy phase of modified heuristics is 
the same as of corresponding heuristic models which are previously presented in Section 5.1. 
When compared with previously presented heuristics, modified heuristics differ in the way of 
performing selection of neighbor CSs during the LS phase. Instead of analyzing for every CS in 
S, all possible neighbors that are not members of S, the LS algorithm of modified heuristics 
randomly selects only one neighbor for every CS in S. This ensures significant reductions in 
exploration complexity of the LS phase, which in addition influences on the computational time. 

6. Numerical results 
In order to verify the effectiveness of proposed heuristic algorithms, we have compared results 
of heuristic algorithms with optimization results obtained by corresponding ILP models. While 
results of the ILP models have been obtained at the output of CPLEX solver, results of the 
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heuristics approaches are generated following phases of the previously described pseudo codes. 
The efficiency of heuristic algorithms has been tested using an INTEL-Core 2 E8400 processor 
with Kubuntu 8.04 OS and its integrated gpp as compiler. To perform an estimation of energy 
savings obtained with ILP models and heuristic algorithms, we consider the typical working 
activity of nowadays energy inefficient WLANs. Hence, we assume that every AP (CS) always 
transmits at maximum Tx power (k=1) and this transmission does not depend on variations in 
the traffic pattern. Because of this, a permanent average power consumption equal to 12 W (8,64 
kWh/monthly) for every CS inside the SA is considered. This is typical average power 
consumption of APs installed worldwide during last 10 years. Energy consumed by such a 
network is treated as reference network energy consumption.  

6.1 Power consumption and energy savings 
For the case of the medium size network instance presented in Fig. 1, obtained numerical results 
in terms of the instantaneous network power consumption and coefficient of energy savings are 
shown in Fig. 4. Coefficient of energy savings have been calculated in accordance with 
reference to energy consumption of corresponding WLAN instances. The energy savings 
coefficient for each time period is defined as the ratio of energy consumed by analyzed model 
and reference energy consumption of analyzed instance. In Fig. 4 it can be noticed that 
developed heuristic algorithms can modulate instantaneous network power consumption and 
energy savings coefficient in accordance with the realistic traffic patterns. Fig. 4-(b) reports 
results of  
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Fig. 4. a), b), c) Instantaneous network power consumption if different time periods and d), e), f) Changes 

in trend of average energy savings coefficient 

instantaneous network power consumption obtained for ILP model ME/FC and heuristic 
algorithms H-ME/FC and HM-ME/FC. For each of them, we can notice higher values of 
instantaneous network power consumption during each time period when compared with power 
consumption of other ILP models and heuristic algorithms presented in Fig. 4-(a) and 4-(c). This 
is because guaranteeing full SA coverage at any moment during a day requires a higher number 
of network devices to be powered on, which consequently results in higher instantaneous power 
consumption of WLAN. If we compare results in Fig. 4-(a) with those presented in Fig. 4-(c), 
we can see that the limitation of frequent variations in activity of CSs introduced by H-MELV 
and HM-MELV heuristics does not introduce a significant increase in instantaneous power 
consumption. Therefore, the approach tending to preserve powered on CSs in subsequent time 
periods can be considered for practical implementation. This is important since reduction of 
frequent re-association of users and minimization of signaling overheads will be of great 
significance for future energy-efficient management systems.  

Moreover, in the case of network power consumption, results obtained for the heuristics 
closely pursue those of corresponding ILP models. Generally, Fig. 4-(a), 4-(b) and 4-(c) show 
that results of instantaneous power consumption in most time periods are for heuristics up to 
10% higher in comparison with results obtained by the corresponding ILP models. This is a 
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consequence of the suboptimal nature of heuristics which offers the best possible solution for a 
given problem. Also, somewhat higher instantaneous power consumption of heuristics 
influences on coefficient of average energy savings which is according to Fig. 4-(d), 4-(e) and 4-
(f) something lower than those of ILP models. In Fig. 4-(d), 4-(e) and 4-(f), we can notice that 
higher energy savings can be obtained during time periods of lower user activity (t=1, 5) and 
vice versa. This confirms that usage of developed heuristic algorithms ensures adaptation of 
network energy consumption to variations in traffic load. When compared with energy 
consumption of nowadays WLANs that lack any energy efficiency, this result with minimization 
of monthly network energy consumption (Fig. 5).  

6.2 Energy consumption and computation complexity 
To prove the convenience of the proposed ILP and heuristic optimization framework, we 
performed five separate tests for each network structure presented in Fig. 1 and 2. Network 
structures have properties as stated in Table 1. Each testing differentiates in allocation of TPs, 
which was random inside the CA of each CS. By performing analyses for each of nine proposed 
models on five network instances of different SA size, we obtain 150 optimization results in 
terms of monthly energy consumption. Due to space shortage, in Fig. 5 we present average 
values of these results, while in Fig. 6 we present average value of computational time elapsed 
before reaching a feasible solution. 

Slightly higher values of power consumption presented in previous Section for the case of 
heuristics are directly reflected in higher monthly energy consumption shown in Fig. 5, for each 
of the considered WLAN instances. In Fig. 5 it can also be noticed that modified versions of 
heuristics (HM-ME, HM-ME/FC, HM-MELV) have a little bit higher monthly energy 
consumption for every instance, when compared with corresponding native heuristics (H-ME, 
H-ME/FC, H-MELV). It is a result of a simpler neighbor search process during the LS phase, 
which terminates on the first randomly selected neighbor. This approach reduces the possibility 
of finding a better neighbor which consequently results with a somewhat higher value of 
monthly energy consumption. Obviously larger network instances with a higher number of 
network devices (APs) consume more energy, regardless of the fact that energy-efficient 
network management has been implemented. Nevertheless, even such energy consumption is 
according to Fig. 5 significantly lower if compared with reference energy consumption of 
WLANs lacking any management schemes. 

Although heuristic approaches offer inferior results of monthly energy consumption in 
comparison with results obtained by corresponding ILP models, for reaching final solution, 
heuristics need significantly lower computational time. This can be clearly seen in Fig. 6, which 
confirms that the size of some network instances directly influences computational complexity 
of the optimization problem and consequently on the time needed for finding the final solution. 
According to Fig. 6, computational time for small network instances is very low, having values 
of the order of less than one minute for both heuristics and mathematical models. Hence, for 
small network instances, the size of optimization problem is small and computation of final 
solution becomes fast. 

For medium size instances, an enormous increase in computational time of ILP models (ME, 
ME/FC, MELV) forced us to terminate the optimization process after 24 hours. Actually, for 
medium size network instances CPLEX solver cannot reach an optimal solution in one day (24 
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hours). This is because analyzed optimization problems belong to the NP-hard category of 
problems, lacking any known algorithm that can find an optimal solution in polynomial time. On 
the other hand, for the same network instance each of the proposed modified heuristics finds a 
solution to the optimization problem in 100 times shorter period (Fig. 6). 
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Fig. 5. Monthly energy consumption of ILP models              Fig. 6. Dependence of computational time on 
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Moreover, mathematical (ILP) models solutions using CPLEX solver have not been tested 
against large and extra-large network instances. This is because computational time will be 
enormous (much longer than 24 hours), lacking any possibility for practical implementation of 
ILP models. Nevertheless, for networks of large and extra-large size, heuristics (HM-ME, HM-
MELV) still offer a final solution in a reasonable amount of time (Fig. 6). This time equals up to 
a few hours (Fig. 6) even for extra large instances, which can be acceptable from a practical 
point of view. It is because the optimization process in such large WLANs can be split into 
smaller parts, where a few separate optimization processes can be dedicated to predefined parts 
of the network. For the case of small and medium size network instances, the results presented in 
Fig. 5 and 6 have been obtained with allocation distance of MPs equal to 10 m × 10 m. For large 
and extra-large network instances having area sizes of almost three and five square kilometers 
respectively, results have been obtained for lower dispersion of MPs equal to 30 m × 30 m. It is 
reasonable to believe that with this allocation density of MPs in areas of such sizes we still 
guarantee full SA coverage.  

Although heuristics offer a final solution without guaranteeing optimality, in the context of 
computational time heuristics obviously outperform CPLEX solver. With reasonable 
computational time and a final solution that is at a maximum 10% worse than the solution 
obtained by ILP models and CPLEX solver, heuristics can be a valuable alternative to the ILP 
approach in practical implementations. 

7. Conclusion 
In this paper, we have considered the problem of optimizing the energy consumption of WLANs 
through switching on and off and adjusting the emitted power of access stations based on 
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realistic traffic patterns. We have proposed several ILP optimization models and corresponding 
heuristic algorithms that allow selection of optimal network configuration in terms of energy 
consumption. While ensuring minimization of network energy consumption, some of the 
proposed heuristic algorithms can guarantee full SA coverage or limit frequent variations in 
activity of network devices. Although heuristics offer somewhat inferior results of instantaneous 
power consumption and monthly energy savings, in terms of computational time, heuristic 
algorithms clearly outperform corresponding ILP models. Even for the optimization problems 
analyzed on the largest network instances, heuristics still give a feasible solution in a reasonable 
amount of computational time. This makes heuristics algorithms convenient for practical 
implementation in real network management systems. We are currently working to extend 
proposed ILP models and heuristic algorithms to consider possible energy savings in wide area 
wireless access networks like 2G/3G/4G networks.  
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