• 제목/요약/키워드: Local Coordinates System

검색결과 80건 처리시간 0.022초

Adaptive control with neural network for a magnetic levitation system

  • Hao, Shuang-Hui;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.195-200
    • /
    • 1994
  • This paper presents a nonlinear adaptive control approach to a 4-point attraction magnetic levitation system using the local coordinates transformation and neural network. Based on local coordinates transformations, the magnetic levitation system can be represented in a state magnetic levitation system can be represented in a state space from of a 4-input 4-output. Neural networks which are defined in the new coordinates are used to learn the nonlinear functions of the system which are defined in the new coordinats also. The parameters of the neural networks are updated in an on-line manner according to an augmented tracking error. The simulation results are reported in this paper.

  • PDF

전역좌표계에 근거한 부분구조합성법과 국부좌표계에 근거한 부분구조합성법의 비교 (Comparison of Substructure Synthesis Methods based on Global and Local Coordinates)

  • 곽문규;나성수;배병찬
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.712-719
    • /
    • 2006
  • This paper is concerned with the comparison of substructure synthesis methods based on global and local coordinates. The substructure synthesis methods based on the global coordinates were first proposed for the dynamic analysis of complex structure and the substructure synthesis method based on the local coordinates was proposed to solve the dynamic problem of tree-like structure. However, the conceptual difference between two methods in solving the dynamic problem has never been explained. In this paper, a structure consisting of two beams is considered to show the conceptual difference of two methods. The dynamic formulation shows the characteristics and differences of two methods explicitly. The procedure for choosing proper substructure modes in each method is also explained in detail. In addition, the advantage of the substructure synthesis method based on the local coordinate system is discussed based on the numerical example. Numerical examples show how two methods are applied to the addressed problem.

지역 극좌표계를 이용한 임의 형상 자유단 평판의 자유진동해석을 위한 무요소법 개발 (Development of Meshless Method for Free Vibration Analysis of Arbitrarily Shaped Free Plates Using Local Polar Coordinates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.674-680
    • /
    • 2008
  • A new meshless method for obtaining natural frequencies of arbitrarily shaped plates with the free boundary condition is introduced in the paper. In order to improve the characteristics of convergence and accuracy of the method, a special local polar coordinates system is devised and located for each of nodes distributed along the boundary of the plate of interest. In addition, a new way of decreasing the size of the system matrix that gives natural frequencies of the plate is employed to reduce the amount of numerical calculations, which is needed for computing the determinant of the system matrix. Finally the excellence of the characteristics of convergence and accuracy of the method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate and converged swiftly to exact values as the number of boundary nodes increases.

6×6 자율주행 차량의 실시간 해석을 위한 연구 (A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle)

  • 조두호;이정한;이기창;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

몸통 운동시 지향각(Orientation angles)을 이용한 허리 근육의 3차원 위치 좌표 추정 기법 (The method to estimate 3-D coordinates of lower trunk muscles using orientation angles during a motion)

  • 임영태
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.125-133
    • /
    • 2002
  • The purpose of this study was to develop a method for estimating 3-D coordinates of lower trunk muscles using orientation angles during a motion. Traditional 3-D motion analysis system with DLT technique was used to track down the locations of eight reference markers which were attached on the back of the subject. In order to estimate the orientations of individual lumbar vertebrae and musculoskeletal parameters of the lower trunk muscle, the rotation matrix of the middle trunk reference frame relative to the lower trunk reference frame was determined and the angular locations of individual lumbar vertebrae were estimated by partitioning the orientation angles (Cardan angles) that represent the relative angles between the rotations of the middle and lower trunks. When the orientation angles of individual intervertebral joints were known at a given instant, the instantaneous coordinates of the origin and insertion for all selected muscles relative to the L5 local reference frame were obtained by applying the transformation matrix to the original coordinates which were relative to a local reference frame (S1, L4, L3, L2, or L1) in a rotation sequence about the Z-, X- and Y-axes. The multiplication of transformation matrices was performed to estimate the geometry and kinematics of all selected muscles. The time histories of the 3-D coordinates of the origin and insertion of all selected muscles relative to the center of the L4-L5 motion segment were determined for each trial.

Compression of 3D Mesh Geometry and Vertex Attributes for Mobile Graphics

  • Lee, Jong-Seok;Choe, Sung-Yul;Lee, Seung-Yong
    • Journal of Computing Science and Engineering
    • /
    • 제4권3호
    • /
    • pp.207-224
    • /
    • 2010
  • This paper presents a compression scheme for mesh geometry, which is suitable for mobile graphics. The main focus is to enable real-time decoding of compressed vertex positions while providing reasonable compression ratios. Our scheme is based on local quantization of vertex positions with mesh partitioning. To prevent visual seams along the partitioning boundaries, we constrain the locally quantized cells of all mesh partitions to have the same size and aligned local axes. We propose a mesh partitioning algorithm to minimize the size of locally quantized cells, which relates to the distortion of a restored mesh. Vertex coordinates are stored in main memory and transmitted to graphics hardware for rendering in the quantized form, saving memory space and system bus bandwidth. Decoding operation is combined with model geometry transformation, and the only overhead to restore vertex positions is one matrix multiplication for each mesh partition. In our experiments, a 32-bit floating point vertex coordinate is quantized into an 8-bit integer, which is the smallest data size supported in a mobile graphics library. With this setting, the distortions of the restored meshes are comparable to 11-bit global quantization of vertex coordinates. We also apply the proposed approach to compression of vertex attributes, such as vertex normals and texture coordinates, and show that gains similar to vertex geometry can be obtained through local quantization with mesh partitioning.

독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석 (Free Vibration Analysis of Simply-Supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method)

  • 곽문규;한상보
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1177-1182
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have be en many methods developed for the free vibration of the rectangular plate with a rectangular cutout., very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian co ordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

  • PDF

독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석 (Free Vibration Analysis of Simply-supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method)

  • 곽문규;한상보
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.643-650
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have been many methods developed for the free vibration of the rectangular plate with a rectangular cutout, very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian coordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

3차원 공간에서 코일스프링의 강성에 관한 연구 (A Study on the Stifness of Coil Spring in the Three Dimensional Space)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

원추형 코일스프링의 강성에 대한 연구 (A Study on the Stiffness of Frustum-shaped Coil Spring)

  • 김진훈;이수종;이경호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF