• Title/Summary/Keyword: Loading Priority

Search Result 48, Processing Time 0.023 seconds

Maximum Profit Priority Goods First Loading Algorithm for Barge Loading Problem (바지선 적재 문제의 최대이득 물품 우선 적재 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.169-173
    • /
    • 2014
  • Nobody has yet been able to determine the optimal solution conclusively whether NP-complete problems are in fact solvable in polynomial time. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming with $O(m^4)$ time complexity for barge loading problem a kind of bin packing problem that is classified as nondeterministic polynomial time (NP)-complete problem. On the other hand, this paper suggests the loading rule of profit priority rank algorithm with O(m log m) time complexity. This paper decides the profit priority rank firstly. Then, we obtain the initial loading result using the rule of loading the good has profit priority order. Finally, we balance the loading and capability of barge swap the goods of unloading in previously loading in case of under loading. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m log m) time complexity for NP-complete barge loading problem.

The Priority Heuristics for Concurrent Parsing of JavaScript (자바스크립트 동시 파싱을 위한 우선순위 휴리스틱)

  • Cha, Myungsu;Park, Hyukwoo;Moon, Soo-Mook
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.510-515
    • /
    • 2017
  • It is important to speed up the loading time of web applications. Parsing is a loading process that contributes to an increased loading time. To address this issue, the optimization called Concurrent Parsing has been proposed which handles the parsing process in parallel by using additional threads. However, Concurrent Parsing has a limitation that it does not consider the priority order of parsing. In this paper, we propose heuristics that exploit priorities of parsing to improve the Concurrent Parsing. For parsing priority, we empirically investigate the sequence of function calls, classify functions into 3 categories, and extract function call probabilities. If a function has high call probability, we give a high priority and if a function has low probability, we give a low priority. We evaluate this priority heuristics on real web applications and get the 2.6% decrease of loading time on average.

Water Quality Analysis in Nakdong River Tributaries (낙동강 지류·지천 모니터링 결과를 이용한 수질환경 평가)

  • Im, Tae Hyo;Son, Younggyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1661-1671
    • /
    • 2016
  • Water quality in Nakdong river was analyzed using 699 monitoring data sets including flow rates and water quality concentrations collected at 195 tributary monitoring stations (the priority management areas: 35 stations, the non-priority management areas: 160 stations) in 2015. The highest average concentrations of all data for BOD, COD, T-N, T-P, SS, and TOC were 30~600 times higher than the lowest concentrations while the highest average loading rates were 800,000~2,700,000 times higher than the lowest loading rates. Because of the very large differences in the concentrations and loading rates, the variation of the concentrations and loading rates in a priority management monitoring station for BOD, T-P, and TOC was analyzed using the coefficient of variation, the ratio of the standard deviation value to the mean value. For BOD, T-P, and TOC, the coefficients of variation for concentration were mostly less than 100%, whereas the coefficients of variation for loading rate ranged from 31.1% to 232.2%. The very big difference in the loading rates was due to the large variation in flow rates. As a result of this, the estimation of water quality at each monitoring station using the average values of the concentrations and loading rates might be not rational in terms of their representativeness. In this study, new water quality analysis methods using all collected monitoring data were suggested and applied according to the water quality standard in medium-sized management areas.

Three-Dimensional Container Packing Problem (컨테이너 3차원 적재문제)

  • 배민주;최세경;김환성
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.242-248
    • /
    • 2003
  • In this paper, we propose a new heuristic solution for 3D container packing problem for the variable size and the variable kind of freights. First we consider the total cost of container charges, i.e., loading, transportation and handling charges, where the priority of each frights are dealt. By minimizing the total cost of container charges, the kinds of container and its number can be decided automatically. From these factors, we con determine the position in the container and the loading sequence into the container. Finally, by equivalence of freight's weight in container, we can prevent the freight's damage on the handling.

  • PDF

A GA-based Heuristic for the Interrelated Container Selection Loading Problems

  • Techanitisawad, Anulark;Tangwiwatwong, Paisitt
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.22-37
    • /
    • 2004
  • An integrated heuristic approach based on genetic algorithms (GAs) is proposed for solving the container selection and loading problems. The GA for container selection solves a two-dimensional knapsack problem, determining a set of containers to minimize the transportation or shipment cost. The GA for container loading solves for the weighted coefficients in the evaluation functions that are applied in selecting loading positions and boxes to be loaded, so that the volume utilization is maximized. Several loading constraints such as box orientation, stack priority, stack stability, and container stability are also incorporated into the algorithm. In general, our computational results based on randomly generated data and problems from the literature suggest that the proposed heuristic provides a good solution in a reasonable amount of computational time.

A Study on Determining the Priority of Supervising Mooring Line while 125K LNG Moss Type Discharging at Pyeong Taek Gas Terminal

  • Kim, Jong Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.278-286
    • /
    • 2019
  • The Port of Pyeong Taek is located on the west coast, meaning that the difference between the rise and fall of tide is great (flood tide 1.8 to 2.9 knots, ebb tide 1.6 to 2.9 knots). Due to mainly N~NW'ly strong winds & high waves during winter, navigating as well as loading & discharging vessels must focus on cargo handling. The strong tidal and wind forces in the Port of Pyeong Taek can push an LNG carrier away from its berth, which will end up causing forced disconnection between the vessel's cargo line and shore-side loading arm. The primary consequence of this disconnection will be LNG leakage, which will lead to tremendous physical damage to the hull and shore-side equipment. In this study, the 125K LNG Moss Type ship docked at No. 1 Pier of the Pyeong Taek is observed, and the tension of the mooring line during cargo handling is calculated using a combination of wind and waves to determine effective mooring line and mooring line priority management. As a result if the wind direction is $90^{\circ}$ to the left and right of the bow, it was found that line monitoring should be performed bearing special attention to the Fore Spring Line, Fore Breast Line, and Aft Spring Line.

Three-Dimensional Container Packing Problem with Freight Priority (우선순위를 고려한 컨테이너 3차원 적재문제)

  • Bae, Min-Ju;Choi, Se-Kyoung;Kim, Hwan-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.531-539
    • /
    • 2004
  • In this paper, we propose a new heuristic solution for 3D container packing problem for the variable sizes and types of freight. Frist of all, we consider the total cost of container charge i.e., handling, loading and transportation, where each freight will be specifically identified The types of containers and its number to be loaded am be selected automatically by minimizing the total cost of container charge. Maximization of loading space am be achieved efficiently by operating the palletizing and/or depalletizing of freight. By considering these factors we can determine the position of freight in the container and the loading sequence to be packing into the container. In container packing simulation, we can verify that the proposed heuristic algorithm indicates more efficiency space utilization and shows the possibility of using on commercial business.

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping;Fu, Yihui;Zhu, Hantao;Yu, Zihao;Wang, Shanyong
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.353-369
    • /
    • 2022
  • In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

A New Exact Algorithm Using the Stair Structure for the Pallet Loading Problem (계단 구조를 이용한 팔레트적재문제의 새로운 해법)

  • Ji, Yeong-Geun;Jin, Go-Whan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.43-53
    • /
    • 2009
  • The pallet loading problem(PLP) requires the best orthogonal layout that loads the maximum number of identical boxes(small rectangle) onto a pallet(large rectangle). Since the high pallet utilization saves the distribution and storage costs, many heuristic and exact algorithms have been developed so far. Martins and Dell have found the optimal layouts for the all PLPs less than or equal to 100 boxes except for only 5 problems in their recent research. This paper defines the 'stair structure' and proposes a new exact algorithm applying it. In order to show the priority of the proposed algorithm, computational results are compared to previous algorithms and the optimal layouts for the S unsolved problems are given.

Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve (부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구)

  • Jang, Sun Sook;Ji, Hyun Seo;Kim, Hak Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.