Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.4.353

A new reconfigurable liquid-metal-antenna-based sensor  

Zhou, Xiaoping (School of Civil Engineering, Chongqing University)
Fu, Yihui (School of Civil Engineering, Chongqing University)
Zhu, Hantao (School of Civil Engineering, Chongqing University)
Yu, Zihao (School of Civil Engineering, Chongqing University)
Wang, Shanyong (Priority Research Centre for Geotechnical Science and Engineering, School of Engineering, The University of Newcastle)
Publication Information
Smart Structures and Systems / v.30, no.4, 2022 , pp. 353-369 More about this Journal
Abstract
In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.
Keywords
liquid-metal-antenna-based on sensor; polydimethylsiloxane (PDMS); pressure sensor; reconfigurable antenna;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Kim, D., Pierce, R.G., Henderson, R., Doo, S.J., Yoo, K. and Lee, J.B. (2014), "Liquid metal actuation-based reversible frequency tunable monopole antenna", Appl. Phys. Lett., 105(23), 234104. https://doi.org/10.1063/1.4903882   DOI
2 Kim, K., Choi, J., Jeong, Y., Kim, M. Cho, I, Kim, S., Oh, Y. and Park, I. (2019), "Strain-insensitive soft pressure sensor for health monitoring application using 3D-printed microcgannel mold and liquid metal", Proceedings of 20th International Conference, Berlin, Germany, June. https://doi.org/10.1109/TRANSDUCERS.2019.8808472   DOI
3 Kim, N., Chang, Y.L., Chen, J., Barbee, T., Wang, W., Kim, J.Y., Kwon, M.K., Shervin, S., Moradnia, M., Pouladi, S., Khatiwada, D., Selvamanickam, V. and Ryou, J.H. (2020), "Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications", Sens. Actuator A-Phys., 305, 111940. https://doi.org/10.1016/j.sna.2020.111940   DOI
4 Ko, W.H. (1986), "Solid-state capacitive pressure transducers", Sens. Actuator, 10(3-4), 303-320. https://doi.org/10.1016/0250-6874(86)80052-X   DOI
5 Ko, W.H., Shao, B.X., Fung, C.D., Shen, W.J. and Yeh, G.J. (1983), "Capacitive pressure transducers with integrated circuits", Sens. Actuator, 4, 403-411. https://doi.org/10.1016/0250-6874(83)85051-3   DOI
6 Lebedev, V., Laukhina, E., Laukhin, V., Rovira, C. and Veciana, J. (2012), "Towards Flexible Lightweight Strain Sensors with Low Temperature Coefficient of Resistance", Procedia Eng., 47, 857-860. https://doi.org/10.1016/j.proeng.2012.09.282   DOI
7 Lee, S., Lee, M. and Lim, S. (2020), "Frequency reconfigurable antenna actuated by three-storey tower kirigami", Extreme Mech. Lett., 39, 100833. https://doi.org/doi:10.1016/j.eml.2020.100833   DOI
8 Li, X. and Zhang, Y.F. (2008), "Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint", Smart Struct. Syst., Int. J., 4(5), 565-582. https://doi.org/10.12989/sss.2008.4.5.565   DOI
9 Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable Strain Sensors based on Thermoplastic Elastomer Microfluidics Embedded with Liquid Metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, July. https://doi.org/10.1109/SENSORS43011.2019.8956780   DOI
10 Li, R., Zhou, Q., Bi, Y., Cao, S., Xia, X., Yang, A., Li, S. and Xiao, X. (2021), "Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches", Sens. Actuator A-Phys., 321, 112425. https://doi.org/10.1016/j.sna.2020.112425   DOI
11 Liu, G.J., Cao, L.P., Wang, L., Liu, X.N., Du, F.J., Li, Y.Y., Liu, Y.L. and Sun, X.B. (2020), "Design of Frequency Reconfigurable Antenna for WLAN/Bluetooth/WiMAX", J. Phys.: Conf. Ser., 1684(1), 012157. https://doi.org/10.1088/1742-6596/1684/1/012157   DOI
12 Mathur, P., Madanan, G. and Raman, S. (2020), "Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications", Int. J. RF Microw. Comput-Aid. Eng., 31(2). https://doi.org/10.1002/mmce.22318   DOI
13 Choi, M., Wi, B., Mun, B., Yoon, Y., Lee, H. and Lee, B. (2015), "A compact frequency reconfigurable antenna for LTE mobile handset applications", Int. J. Antennas Propag., 2015, 764949. http://dx.doi.org/10.1155/2015/764949   DOI
14 Chossaty, J.B., Tao, Y., Duchaine, V. and Park, Y.L. (2015), "Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing", Proceedings of IEEE International Conference, Seattle, WA, USA, July. https://doi.org/10.1109/ICRA.2015.7139544   DOI
15 Dey, A., Kiourti, A., Mumcu, G. and Volakis, J.L. (2015), "Microfluidically reconFigured frequency tunable dipole antenna", Proceedings of 9th European Conference, Lisbon, Portugal, April.
16 Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535   DOI
17 Cohen, D.J., Mitra, D., Peterson, K. and Maharbiz, M.M. (2012), "A highly elastic, capacitive strain gauge based on percolating nanotube networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z   DOI
18 Dey, A., Guldiken, R. and Mumcu, G. (2013), "Wideband frequency tunable liquid metal monopole antenna", Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, July. https://doi.org/10.1109/APS.2013.6710857   DOI
19 Georgopoulou, A., Michel, S., Vanderborght, B. and Clemens, F. (2021), "Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm", Sens. Actuator A-Phys., 318, 112433. https://doi.org/10.1016/j.sna.2020.112433   DOI
20 Guo, D.J., Pan, X.D. and He, H. (2020), "Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors", J. Cent. South Univ., 27(11), 3202-3212. https://doi.org/10.1007/s11771-020-4540-6   DOI
21 Wang, P.S., Liu, Q., Li, X., Zhang, Z.G. and Zheng, D.M. (2020), "Single crystal silicon high temperature piezoresistive pressure sensor", Inst. Tech. Sens., 2, 1-3.
22 Stefan, S., Wedler, J., Rhein, S., Schmidt, M., Korner, C., Michaelis A. and Gebhardt S. (2017), "A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures", Results Phys., 7, 2534-2539. https://doi.org/10.1016/j.rinp.2017.07.034   DOI
23 Su, W., Nauroze, S.A., Ryan, B. and Tentzeris, M.M. (2017), "Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna "trees"", Proceedings of IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, June. https://doi.org/10.1109/MWSYM.2017.8058933   DOI
24 Traille, A., Yang, L., Rida, A. and Tentzeris, M.M. (2008), "A novel liquid antenna for wearable bio-monitoring applications", Proceedings of IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, June. https://doi.org/10.1109/MWSYM.2008.4632984   DOI
25 Ventrelli, L., Beccai, L., Mattoli, V., Menciassi, A. and Dario, P. (2009), "Development of a stretchable skin-like tactile sensor based on polymeric composites", Proceedings of IEEE International Conference, Guilin, China, February. https://doi.org/10.1109/ROBIO.2009.5420644   DOI
26 Wang, B. (2010), "The United States has developed a self-healing liquid metal antenna", Funct. Mater. Inf., 7(1), 55-56.
27 Won, D.J., Baek, S., Huh, M., Kim, H., Lee, S. and Kim, J. (2017), "Robust capacitive touch sensor using liquid metal droplets with large dynamic range", Sens. Actuator A-Phys., 259, 105-111. https://doi.org/10.1016/j.sna.2017.03.032   DOI
28 Xu, D.C., Guo, X.H., Tian, X.J., Liu, W. and Guo, Y.H. (2016), "Design of Dual-Band Flexible Antenna for 2.45 GHz and 5.8 GHz", J. Jilin Univ. (Science Edition), 54(6), 1413-1417.
29 Yu, L.B., Zhao, Z., Fang, Z., Du, L.D. and Ding, G.J. (2010), "Optimization Design of Mental Strain Pressure Sensor Based on MEMS Technology", Inst. Tech. Sens., 10, 1-3, 7.
30 Zhang, T. (2019), "Flexible sensor with new materials to achieve high sensitivity and large strain response", Sens. World, 25(03), 40-41.
31 Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Gu, B., Zhang, H., Lv, Z., Yang, W. and Wang, Z.L. (2017), "Selfpowered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring", ACS Nano, 11(7), 7440-7446. https://doi.org/10.1021/acsnano.7b03818   DOI
32 Zhou, X.P., He, Y. and Zeng, J. (2019), "Liquid metal antennabased pressure sensor", Smart Mater. Struct., 28(2), 25019. https://doi.org/10.1088/1361-665X/aaf842   DOI
33 Zheng, L.X., Li, Z.Q., Song, X.H. and Zhang, X.Y. (2013), "Research on strain resistance effect of smart concrete under triaxial compression", J. Sichuan Univ. (Engineering Science Edition), 45(2), 33-37.
34 Zhou, X.P. and Yu, Z.H. (2021), "Flexible multimode pressure sensor based on liquid metal", Smart Struct. Syst., Int. J., 28(6), 839-853. https://doi.org/10.12989/sss.2021.28.6.839   DOI
35 Zhou, X.P., Deng R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c   DOI
36 Min, S., Asrulnizam, A., Atsunori, M. and Mariatti, M. (2019), "Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites", Mater. Today: Proceedings, 17(3), 616-622. https://doi.org/10.1016/j.matpr.2019.06.342   DOI
37 Park, Y.L., Chen, B.R. and Wood, R.J. (2012a), "Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors", IEEE Sens. J., 12(8), 2711-2718. https://doi.org/10.1109/JSEN.2012.2200790   DOI
38 Pignanelli, J., Schlingman, K., Carmichael, T.B., Rondeau-Gagne, S. and Ahamed, M.J. (2019), "A comparative analysis of capacitive-based flexible PDMS pressure sensors", Sens. Actuator A-Phys., 285, 427-436. https://doi.org/10.1016/j.sna.2018.11.014   DOI
39 Ren, G.J., Cai, C.L. and Wang, D.H. (2016), "Pressure sensor displacement analysis and fatigue lifetime prediction", Environ. Technol., 34(3), 33-36.
40 Saha, P.B., Ghoshal, D. and Dash, R.K. (2020), "A miniaturized frequency reconfigurable antenna with half-mode CRLHembedded metamaterial arm", J. Electromagn. Waves Appl., 35(3), 277-290. https://doi.org/10.1080/09205071.2020.1832587   DOI
41 Saptarshi, G. and Sungjoon, L. (2018), "A multifunctional reconfigurable frequency-selective surface using liquid-metal alloy", IEEE Trans. Antennas Propag., 66(9), 4953-4957. https://doi.org/10.1109/TAP.2018.2851455   DOI
42 Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference, Suzhou, China, July. https://doi.org/10.1109/NEMS.2013.6559886   DOI
43 Shou, Y.D.; Zhou, X.P.; Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089   DOI
44 Park, Y.L., Tepayotl-Ramirez, D., Wood, R.J. and Majidi, C. (2012b), "Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors", Appl. Phys. Lett., 101(19), 191904. https://doi.org/10.1063/1.4767217   DOI
45 Otake, S. and Konishi, S. (2018), "Integration of flexible strain sensor using liquid metal into soft micro-actuator", Proceedings of IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, April. https://doi.org/10.1109/MEMSYS.2018.8346617   DOI
46 Ali, S., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J. and Atashbar, M.Z. (2019), "Flexible capacitive pressure sensor based on PDMS substrate and Ga-In liquid metal", IEEE Sens. J., 19(1), 97-104. https://doi.org/10.1109/JSEN.2018.2877929   DOI
47 Deshmukh, S., Xu, X., Mohammad, I. and Huang, H.Y. (2011), "Antenna sensor skin for fatigue crack detection and monitoring", Smart Struct. Syst., Int. J., 8(1), 93-105. https://doi.org/10.12989/sss.2011.8.1.093   DOI
48 Dildar, H., Althobiani, F., Ahmad, I., Khan, W.U.R., Ullah, S., Mufti, N., Ullah, S., Muhammad, F., Irfan, M. and Glowacz, A. (2020), "Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication", Micromachines, 12(1), 32. https://doi.org/10.3390/mi12010032   DOI
49 Hu, W., Niu, X., Zhao, R. and Pei, Q. (2013), "Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane", Appl. Phys. Lett., 102(8), 083303. https://doi.org/10.1063/1.4794143   DOI
50 Karthikeyan, M., Park, J. and Lee, D.W. (2019), "Liquid metal based flexible microfluidic device for wireless sensor applications", Proceedings of 2019 International Conference, Daejeon, Korea, July. https://doi.org/10.1109/OMN.2019.8925030   DOI
51 Park, Y.L., Majidi, C., Kramer, R., Berard, P. and Wood, R. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029   DOI
52 Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823   DOI
53 Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October-November. https://doi.org/10.1109/ICSENS.2016.7808515   DOI
54 Castorina, G., Donato, L.D., Morabito, A.F., Isernia, T. and Sorbello, G. (2016), "Analysis and design of a concrete embedded antenna for wireless monitoring applications [antenna applications corner]", IEEE Antennas Propag. Mag., 58(6), 76-93. https://doi.org/10.1109/MAP.2016.2609818   DOI
55 Jiao, Y., Young, C.W., Yang, S., Oren, S., Ceylan, H., Kim, S., Gopalakrishnan, K., Taylor, P.C. and Liang, D. (2016), "Wearable graphene sensors with microfluidic liquid metal wiring for structural health monitoring and human body motion sensing", IEEE Sens. J., 16(22), 7870-7875. https://doi.org/10.1109/JSEN.2016.2608330   DOI
56 Khan, M.R., Hayes, G.J., So, J.H., Lazzi, G. and Dickey, M.D. (2011), "A frequency shifting liquid metal antenna with pressure responsiveness", Appl. Phys. Lett., 99(1), 013501. https://doi.org/10.1063/1.3603961   DOI