
IEMS  Vol. 3,  No. 1,  pp. 22-37,  April 2004. 

A GA-based Heuristic for the Interrelated Container 
Selection Loading Problems 

 
 

Anulark Techanitisawad†·Paisitt Tangwiwatwong  
Industrial Engineering & Management School of Advanced Technologies  

Asian Institute of Technology P.O.Box 4, Klong Luang Patumtani 12120, Thailand  
Tel: +66-2-524-5689,  E-mail: anulark@ait.ac.th (A. Techanitisawad) 

 
 

Abstract.  An integrated heuristic approach based on genetic algorithms (GAs) is proposed for solving the 
container selection and loading problems. The GA for container selection solves a two-dimensional knapsack 
problem, determining a set of containers to minimize the transportation or shipment cost. The GA for container 
loading solves for the weighted coefficients in the evaluation functions that are applied in selecting loading 
positions and boxes to be loaded, so that the volume utilization is maximized. Several loading constraints such as 
box orientation, stack priority, stack stability, and container stability are also incorporated into the algorithm. In 
general, our computational results based on randomly generated data and problems from the literature suggest 
that the proposed heuristic provides a good solution in a reasonable amount of computational time. 
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1.  INTRODUCTION 

Logistics is usually regarded as a crucial function in 
an organization, since for sales to be realized, firms must 
deliver or distribute their goods to customers, warehouses, 
or distribution centers. In the present distribution and 
transportation systems, merchandise is normally loaded 
into a container for economical movement and ease of 
handling and transporting in a variety of modes. In 
manual operations, the container type and the number of 
each type to be used must be a priori determined to 
minimize total transportation cost for a shipment. 
However, due to space wastage that is unknown during 
this preliminary stage, it is quite often difficult in practice 
to determine a minimum-cost set of containers that can 
stow all loads. When containers are not well packed, 
additional containers may be required to transport all 
boxes and those containers result in a higher shipping cost. 
In addition, if there is any space remaining in a container 
as a result of the maximum volume utilization of 
containers, more merchandise can be added into the 
container to increase sales volume and revenues to 
exporters, as currently practiced in the import/export 
business. The container selection and loading activities, 
thus, deserve attention for improvement in their cost, 
effectiveness, and efficiency. 

Most papers in the literature only address the 

container loading problem. Although there are many 
approaches developed for the container loading problem, 
according to Bischoff and Ratcliff (1995a), most existing 
approaches are limited when dealing with practical 
requirements, for example, the box orientation, load 
bearing strength, load stability, and shipment priorities. 
This paper, thus, addresses the interrelated container 
selection and container loading problems with several 
practical loading constraints, and also proposes a genetic-
algorithm-based heuristic to solve such problems 
iteratively. 

Given a number of rectangular boxes of products or 
goods in different sizes and weights and different types of 
rectangular containers, each of which has a specific size 
with fixed dimensions and weight capacity, the 
interrelated problems determine a combination of the 
container types and the number of containers of each type 
that minimize the total transportation or shipment cost, 
and a loading pattern of boxes in each container that 
maximizes the volume utilization of the container subject 
to the following practical loading constraints: 

 
1. The box orientation constraint specifies for a box any 

orientation restriction in loading.  Some box types may 
have only one uppermost face but others may have 
any uppermost face. 

2. The stack priority constraint addresses the strength and
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Figure 1.  The stack stability constraint 

 
density of the box or the unloading priority.  A box 
with higher strength has a higher priority being loaded 
first. A box can only be stacked on top of boxes with 
equal or higher priority.   

3. The stack stability characterized in Figure 1 guarantees 
that each box has enough support under its base and is 
within the support parameters required by the user. 
The X support parameter is specified by the 
percentage of the width dimension and the Z support 
parameter is specified by the percentage of the length 
dimension of the box that must be supported by boxes 
below, assuming that X-Z is the corresponding base 
area of a box relative to its orientation.  

4. The stability of the container is determined by the 
center of gravity of a fully loaded container. It must be 
sufficiently stable or balanced in both transverse and 
longitudinal planes for ease of handling and safety 
purposes, assuming that the weight of each box is 
distributed uniformly over the box shape. 

 
In terms of the solution algorithm, the genetic 

algorithm (GA) concept was formally introduced in 
1970s by John Holland at the University of Michigan. It 
is a search procedure based on the mechanism of natural 
selection and genetics (Goldberg, 1989), using a process 
similar to biological evolution to improve a set of feasible 
solutions called a population or generation through an 
iterative process based on a fitness or evaluation function. 
The genetic operators include reproduction, cloning, 
crossover, and mutation. GAs have been extensively and 
successfully applied to a variety of combinatorial 
optimization problems. Motivated by success and 
flexibility of the GAs, we devised an extended version of 
Kawakami et al.(1991) and proposed an integrated 
algorithm for iteratively solving the container selection 
and loading problems. 

The remainder of the paper is organized as follows: 
Section 2 provides a brief literature review mostly on 

container loading. Section 3 proposes the integrated 
solution procedure, describing in details the selection and 
loading modules, while Section 4 presents the 
computational evaluation and analysis of the procedure 
and the comparison of its performance with other existing 
methods. Section 5 gives conclusions and suggestions for 
future research. 

2.  LITERATURE REVIEW 

The container-loading problem is normally classified 
as the three-dimensional packing problem found in the 
existing literature. Dyckhoff (1990) systematically compiled 
and classified different types of cutting and packing 
problems. Relative to the large volume of works 
addressing one or two-dimensional cutting and packing 
problems, only a limited number of researches have dealt 
with three dimensions. Most works are concerned with 
practical, heuristic solution procedures due to the 
problem’s well-known complexity; however not many 
practical loading constraints have been addressed.  

A heuristic procedure for packing boxes into a 
container using the layer concept was firstly developed by 
George and Robinson (1980). This heuristic allows the 
boxes to be stacked with any uppermost face and no 
restriction on the number of boxes stacked on top, while 
the boxes of the same type are restricted to be stacked in 
proximity. The heuristic procedure is based on the 
concept of filling the container layer by layer, a section of 
the length over the complete height and width of the 
container. The layer concept has become the basic idea of 
some subsequent developments, such as Gehring et al. 
(1990), Bischoff and Marriott (1990), Bischoff and 
Ratchiff (1995b), Davies and Bischoff (1999), and Pisinger 
(2002). 

Metaheuristics, namely tabu search and genetic 
algorithms, were also applied to the container loading 
problem. Bortfeldt and Gehring (1998) applied a tabu 
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search algorithm in a two-stage procedure, while 
Bortfeldt and Gehring (2001) proposed a hybrid GA 
based on the layer concept for solving the container 
loading problem with several practical constraints. A 
chromosome representing a stowage plan was 
generated by a variant of the basic loading heuristic of 
Gehring et al. (1990). The crossover and mutation 
operators were done on layers, substructures of the 
stowage plan. The computational results showed quite 
an improvement in volume utilization, when compared 
with other algorithms. The practical constraints 
addressed in Bortfeldt and Gehring (2001) are similar 
to ours, although differences do exist. Their so-called 
stability and stacking constraints are quite restrictive, 
while we allow flexibility for the user to specify the 
minimum required base support of a box and stack 
priority. In terms of the container balance, we also 
check for the stability of an inclined container. 

Kawakami et al. (1991) proposed a mechanism in 
which the three-dimensional packing rule is automatically 
adjusted by applying a genetic algorithm. The packing 
strategies used to select the next loaded position and box 
are controlled by two evaluation functions, consisting of 
the weighted sum of the problem characteristics. Their 
weighted coefficients are prescribed by the genetic 
algorithm.  However, limitations do exist in that all of the 
boxes can have only one fixed orientation, and that no 
practical aspects were considered in the packing 
procedure. Motivated by the flexibility of Kawakami et al. 
(1991), we further modified their GA approach to solve 
our combined container selection and loading problem, 
while simultaneously considering several practical 
loading constraints. 

In addition to the heuristics, a few papers proposed 
the analytical approach, attempting to find exact solutions. 
Tsai et al. (1993) formulated a mixed-integer programming 
model for the three-dimensional pallet loading problem. 
As expected, the significant computational time 
requirement of the model does limit the practical use in 
real-time palletizing applications, and the computation 
time was found to increase exponentially as the number 
of different box sizes increases. Ngoi et al. (1994) solved 
the container-packing problem by applying a spatial 
representation technique that represents the objects and 
empty space as a combination of variable orthorhombic 
cells by means of a simple matrix structure. Chen et al. 
(1995) formulated the problem into a zero-one mixed 
integer-programming model which incorporates many 
practical restrictions, such as carton orientations, multiple 
carton sizes, multiple container sizes, avoidance of carton 
overlapping, and space utilization.  Several aspects of the 
container selection and loading problem, such as selecting 
one container from several alternatives, weight distribution 
of the cartons in the container, and variable container 
length were also addressed. However, as in other analytical 

approaches, this model suffered from long computational 
times and, thus, is not practical for real applications. 

For the combined container selection and loading 
problem, Laotaweesub (1996) proposed an iterative 
method to determine a set of containers that minimizes 
the total transportation cost and a loading pattern for each 
container that maximizes the volume utilization.  The 
container selection was solved by an integer-
programming model whose constraints include the 
volume and payload capacity of the selected containers.  
The container loading algorithm, on the other hand, was 
based on the layer concept of Gehring et al. (1990), while 
considering the stack restriction, box orientations, and 
container stability. Although Laotaweesub (1996) dealt 
with many practical constraints, weakness still exists in 
the loading procedure, due to the high dependency of the 
volume utilization on the choice of the reference box. 
This paper addresses the combined container selection 
and loading problem as in Laotaweesub (1996), however, 
with the additional stack stability constraint, and further 
improves the effectiveness and efficiency of the integrated 
solution procedure. 

3.  THT INTEGRATED HEURISTIC SOLUTION 
PROCEDURE 

The integrated solution procedure summarized in 
Figure 2 is an iterative procedure combining two main 
heuristic algorithms, namely the container selection 
algorithm (Section 3.1) and the container loading 
algorithm (Section 3.2). The container selection algorithm 
selects a combination of the available containers for 
loading all boxes, minimizing the total transportation or 
shipment cost.  The container loading algorithm, on the 
other hand, loads boxes into one container at a time, 
resulting in a loading pattern of each selected container.  
The practical loading constraints and limitations are 
considered in the loading heuristic. Once all boxes are 
loaded, the integrated procedure terminates. Otherwise, 
the container selection algorithm is resolved, after 
accordingly increasing the minimum required volume 
(MRV) by the total volume of the remaining boxes and, 
only if necessary, the minimum required weight (MRW) 
by the total weight of the remaining boxes. However, 
in almost all practical cases, MRW normally remains 
unchanged in all iterations, unless the weight 
constraint is significantly dominant. Given the updated 
values of MRV, a new set of containers is determined 
and the integrated procedure repeats as shown in 
Figure 2. For the same containers suggested by both 
old and new sets of containers, their loading solutions 
are retained, whereas the rest must be unloaded, and 
those boxes unloaded must be returned to the 
remaining box list. Consequently, only new containers 
will be loaded with the remaining boxes. 
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Figure 2.  The integrated container selection and loading algorithms 
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Figure 3.  The genetic algorithm for the container selection problem
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3.1  Container Selection Problem and Algorithm 

Laotaweesub (1996) proposed a simple two-
dimensional knapsack model to find an optimal set of 
containers that minimizes the total shipment cost, subject 
to the volume capacity and the weight capacity 
constraints. The model can be written as follows:   

Minimize  
1

n

i i
i

c x
=
∑

subject to         
1

n

i i
i

v x MRV
=

≥∑         

1

n

i i
i

w x MRW
=

≥∑  

    xi    ≥ 0, integer    for all i, 

 
whereas: 

I  = container type; i = 1, 2, 3, …, n  (positive  
integer) 

xi  =  Number of containers of type I 

ci  =  Freight rate or transportation cost of  
container type i   

vi  = Volume capacity of container type i  

wi  = Weight capacity or maximum payload of  
container type i   

MRV    = Minimum required volume for loading all  
boxes    

MRW   = Minimum required weight for loading all  
boxes 

 
In this study, we propose a genetic algorithm to 

solve the two-dimensional knapsack problem above for 
four reasons. Firstly, the problem is of a small size and the 
heuristic approach such as GA can often provide good 
solutions. From our preliminary testing (not reported), the 
GA can, in almost all cases, obtain optimal solutions 
quickly.  Secondly, due to the space wastage that incurs 
inevitably after loading, we found that optimality of the 
solution in this part may not be as critical as that of the 
container loading.  Thirdly, by using the GA, we can be 
positive that for a larger problem with a higher number of 
different container types, the runtime will normally be 
fast.  Lastly, in order to minimize the programming effort, 
the same GA code can be used for both container 
selection and loading algorithms.  

A simple GA for the container selection problem was 
proposed as follows. A solution is represented by a 
chromosome which consists of the number of each 
container type {x1, x2, x3,…, xn}. The initial population is 
randomly generated. Each chromosome is evaluated 
using the following evaluation function: 

Evaluation function = Total transportation cost + 
Volume penalty + Weight penalty, in which the penalty is 
M (a big positive number) if the corresponding constraint 
is violated. 

In each generation, a new population is first created 
by the cloning operator with a specific percentage of 
cloning using the elitism concept. Two chromosomes or 
“Parents” are selected from the previous generation using 
the roulette wheel method. The one-point crossover is 
then performed on the parents to obtain two new 
chromosomes or “Offsprings”. The crossover is repeated 
until the number of new chromosomes including cloned 
ones is equal to the population size. In addition, the 
mutation operation may be performed with the mutation 
probability on the new offsprings generated from the 
crossover operations, selecting a position in the 
chromosome randomly, and then replacing the value at 
that position with a new randomly generated value. The 
solution of the container selection GA is obtained from 
the best chromosome in the final generation. Its algorithm 
is illustrated in Figure 3.  

3.2  CONTAINER LOADING PROBLEM AND ALGORITHM 

3.2.1  Loading Concept 

Our container loading algorithm was modified from 
Kawakami et al. (1991), in which boxes are loaded into a 
container in the two following steps: 

 

Step 1: Select a loading position in a container.  
A best loading position is a point or coordinate (xk, yk, 

zk) that minimizes, among all possible positions at which 
a box could be located, the point evaluation function: 

Pk  = p1 
.xk

2 + p2 
.yk

2 + p3 
.zk

2 + p4 
.xk 

.yk + p5 
.xk 

.zk + 
p6 

.yk 
.zk + p7 

.xk  + p8 
.yk + p9 

.zk, 

in which p1, p2, p3,…, p9  are the weighted coefficients. 

 
Step 2: Select a box to be loaded at the selected loaded 

position.  
A best box to be loaded is one that maximizes, 

among all remaining box i, the box evaluation function: 

9

1
,i j

j
B b fact

=

= ∑ jor

in which bj  is the jth weighted coefficient and factorj  is 
the jth evaluation factor which is defined to reflect the 
individual characteristics of box i as follows:  
 
factor1   =   (wi 

.hi 
.li) Volume of box i  

factor2   =   (wi 
.hi) / (W 

.H) Ratio of the x-y area of box i  
and the container 

factor3  = (wi 
.li) / (W 

.L) Ratio of the x-z (base) area of  
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box i and the container 

factor4  = (hi 
.li) / (H 

.L) Ratio of the y-z area of box i  
and the container  

factor5  = (hi)2 / (wi 
.li) Ratio of y (height) to the x-z  

(base) area of box i 
factor6  = orientation type of box i  

0:  A box has only one fixed position relative to the 
container. 

1:  A box has the fixed height dimension or only one 
uppermost face, while the width and length 
dimensions (base dimensions) are interchangeable. 

2:  A box can be put in any orientation with any 
uppermost face. 

factor7  = stack index of box i  
The stack index, a positive integer predetermined by 
the user, indicates the stackability of a box. A box 
with a low stack index is of a high density and high 
strength, and thus, has a high priority to be loaded 
first. Only a box with a higher stack index can be 
stowed on top. 

factor8  = (total number of boxes of box i type) . (weight 
of box i type)
total weight of all boxes 

factor9 = total number of boxes of box i type / total 
number of all boxes 

 
The point and box evaluation functions proposed 

here are extensions of those presented by Kawakami et al. 
(1991) that included only three factors. From our 
preliminary computational experience, having more 
factors that reflect different problem characteristics often 
resulted in better solution quality. The weighted 
coefficients of the evaluation functions, on the other hand, 
are determined by a genetic algorithm to maximize the 
volume utilization or, equivalently, to minimize the space 
wastage of a container. The GA for container loading is 
described in details in Section 3.2.3. 

3.2.2  The Loading Process Algorithm 

Given a container and boxes, the loading process 
attempts to pack boxes, if not all, into the container, using 
the point and box evaluation functions described above 
and checking volume and weight feasibility and practical 
limitations including stack priority and stability. The 
loading algorithm is summarized in Figure 4.   

Based on the box evaluation function, all boxes are 
sorted in a nonincreasing order of Bi.  The set of loading 
points is initialized and (0,0,0) is set as the first and 
currently chosen point or loading position. If there is 
more than one possible loading position in the point set, 
the best point k that minimizes Pk is selected as the current 
point. For each current point, the first box in the box type 
set or list is considered as the “current box” to be tried for 
loading.  Given all possible orientations of the current 

box, the loading constraints are then checked. A box can 
be loaded only if all of the following conditions are met: 
(1) size: it fits into the remaining space based on the 
current loading point; (2) overlap: it does not overlap 
with any other loaded boxes; (3) stack priority: its stack 
index is higher than that of the box below or that of the 
current loading point; (4) stack stability: it has sufficient 
base support as required by the user; (5) weight capacity: 
the total weight of the loaded boxes must not exceed the 
maximum payload of the container. If all checks are 
passed, the current box is loaded at the current point; 
both are then removed from their respective sets; the 
three new points are added to the point set; and the 
process repeats. Otherwise, the next box in the list is 
considered. If no remaining box can be loaded at the 
current point, this point is deleted from the list, and 
another point is selected. The loading process continues 
until no box remains or no points can be loaded by any 
remaining boxes. 

3.2.3  The Genetic Algorithm for the Container 
Loading 

To achieve a good loading pattern that maximizes 
the volume utilization of a container, it is important to 
prescribe the sets of weighted coefficients pj and bj 
respectively for the point and box evaluation functions 
that best suit the loading problem at hand.  Proposed by 
Kawakami et al. (1991), the GA is flexible and capable in 
searching the set of weighted coefficients without specific 
structures or prior information.  

The general GA framework and components as 
described in Section 3.1 are applicable to the container 
loading as well, except where indicated otherwise. Here, 
each chromosome is, instead represented by real values of 
the weighted coefficients {p1, p2, p3,…, p9, b1, b2, b3,…, 
b9}. Those in the initial population are randomly 
generated. The random crossover was found in our 
preliminary experiment to outperform the one- and two-
point crossovers, and, thus, implemented.  

Since the overall objective is to maximize the 
volume utilization of a container, each chromosome can 
only be evaluated after the loading process has been 
completed, as shown in Figure 5, using the following 
fitness function:  

Fitness function = Container volume utilization* 
Penalty factor, 
in which the penalty factor = 1 if the container stability 

is satisfied, or 
   =  1/M otherwise. 

The container stability is checked after the container has 
been completely loaded. Given that xi, yi, zi are positions 
of the center of gravity of loaded box i in x-, y-, and z-
axes, respectively, the center of gravity of the loaded 
container  
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Figure 4.  The loading process algorithm 
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Figure 5.  The evaluation process of each chromosome in the container loading 

 
 

( ), , , ,
i i i i i i

i i i

i i
i i i

m x m y m z
X Y Z

m m m

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑ i

⎟
⎟ ,  

where mi is the mass of the box i. 
Figure 6a characterizes two different methods in 

checking for the container stability. One is by the 
horizontal range limit, within which the center of gravity 
(X, Y, Z) of the container must fall in both transverse and 
longitudinal planes, so that the container is considered 
stable for handling. The other is by the maximum inclined 
angle, with which (X, Y, Z) must falls within its base in 
both transverse and longitudinal planes. In this case, the 
following conditions are checked:  

Arctan(X/Y) ≥ θT and Arctan((W-X)/Y) ≥ θT in the 
transverse plane (see Figure 6b); 

Arctan(Z/Y) ≥ θL and  Arctan((L-Z)/Y) ≥ θL in the 
longitudinal plane (see Figure 6c); 

 
where:     

θT is the maximum inclined angle in the transverse plane. 
θL is the maximum inclined angle in the longitudinal 

plane. 
W is the width of the container. 
L  is the length of the container. 

4.  COMPUTATIONAL RESULTS AND ANALYSIS 

The integrated container selection and loading 
system was implemented in Microsoft Visual Basic 6.0, 
providing a user interface for input data and results 
including a graphical loading pattern.  All experiments 
were conducted on an IBM-PC compatible with the AMD 
Athlon 700 MHz CPU and 64 MB RAM. From a 
preliminary experiment (not reported), we found that the 
optimality of the set of containers selected in the 
container selection algorithm has very little effect on the 
quality of the overall solution, which depends rather 
heavily on the performance of the container loading 
algorithm. All of our experiments, except indicated 
otherwise, are, therefore, focused on the effectiveness and 
efficiency of the container loading problem. Genetic 
parameters were also tested and recommended. In 
addition, computational times and comparisons with 
results from the literature are reported. 
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Figure 6a.  Conditions for the container stability 
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Figure 6b.  Container stability with maximum inclined angle in the transverse plane 
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Figure 6c.  Container stability with maximum inclined angle in the longitudinal plane 
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4.1  Randomly Generated Container Loading Test 
Problems 

Thirty container loading test problems were 
randomly generated using the uniform distribution.  
Experimental factors include two levels of box 
dimensions (30-90 cm and 30-180 cm.) and four levels of 
the number of box types (1-5, 6-20, 21-50, and 51-100 
types). The range of the number of boxes per type 
consequently depends upon the level of number of box 
types. The differences in box dimensions, on the other 
hand, prescribe in each level the range of box dimensions. 
Based on these factors and ranges specified in Table 1, 
other box data such as dimensions of boxes and 
restrictions on orientation, stack index, and weight were 
randomly generated. Table 2 summarizes the levels of the 
experimental factors for each test problem.  

The random generation procedure for each test 
problem is as follows:  

 
Step 1 : Generate the level of differences in box dimensions, 

the level of the number of box types, and 
correspondingly the number of box types for 
each box type. 

Step 2 : For each box type, generate the parameters in this 
particular order: (i) number of boxes, (ii) box 
dimensions based on the range specified by the 
level of differences in box dimensions, (iii) box 
orientation, (iv) stack index, (v) weight per 
volume 

Step 3 : Generate the container dimensions and container 
weight capacity per volume. 

Step 4 : Accept the generated problem only if the volume 
of the container is less than the total volume of 
all boxes and the maximum payload of the 
container is greater than the total weight of all 
boxes. Otherwise, repeat all steps. 

 
Generally, difficulty in the container loading 

problem has been known to be associated with the 
volume maximization, while the maximum payload of the 
container is, normally, not the constraint in practice.  To 
obtain meaningful and practical results, we imposed the 
above conditions on the generated problems. 

 

4.2  Genetic Algorithm Performance and Control 
Parameters 

In a genetic algorithm, several control parameters 
need to be set appropriately for each application to 
optimize its performance. We conducted an extensive 
preliminary experiment to determine suitable parameter 
values, and noted that the GAs for both container 
selection and loading problems performed well and 
resulted in good solution quality, with a high crossover 

rate of 0.85-0.95, the cloning rate of 0.05-0.15, and the 
mutation rate of 0.05-0.15. The experiment also showed 
that the GA normally found better solutions when the 
population size and the number of populations are large. 
Realizing the trade-off with the computational time, the 
recommended values of the control parameters for both 
GAs are summarized in Table 3. Note that specifically for 
the container loading GA, the maximum number of 
generations is set, based on the variable optimization 
level indicated by the user. The optimization level trades 
off between the computational time and solution quality. 
In our implemented system, we allow the optimization 
level to vary in ten levels each of which prescribes a 
different number of generations as specified in Table 3. 
The use may choose a low optimization level, resulting in 
a short computational time, but may sacrifice the quality 
of loading solutions obtained, and vice versa. The 
recommended values were subsequently used in all 
experiment that follows. 

 

4.3  Effect of Loading Constraints 

The stack stability of boxes is controlled by the 
required base support parameters supplied by the user.  
The effect of the stack stability was studied for its impact 
on the quality of solutions. From the experimental results, 
it is interesting to note that to relax or tighten this 
constraint does not directly or consistently increase the 
volume utilization, but the solution quality is rather 
problem dependent.  However, we strongly recommend 
that this constraint be included in the loading process for 
a more realistic result, and that high values of the 
parameters be set to guarantee the stack stability.  

We also conducted the experiment to study the 
effect of other loading constraints. The population size 
and the maximum number of generations were set to be 
60 and 10, respectively, while other genetic algorithm 
parameters were set as recommended. The box 
orientation and the stack priority constraints follows the 
descriptions of test problems, whereas the stack stability 
was set at the support of 0.85 for both X and Z axes.  The 
container stability was considered with the maximum 
angle of 7.29° for the transverse plane and of 45° for 
the longitudinal plane, as suggested by Laotaweesub 
(1996). 

The results showed that, in general, the loading 
solutions achieved lower volume utilization when the 
loading constraints exist.  The explanation for this is that 
the loading constraints, except the stack stability 
constraint, reduce the number of feasible solutions and 
the solution space, resulting in less volume utilization of 
the container. However, from our thirty experimental 
problems, the existence of the loading constraints reduced, 
on the average, by 3.13% of the volume utilization 
without loading constraints. 
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Table 1.  Parameters of the experimental problems 
Parameter Range Unit Remarks 
Box Parameters    
Differences in Box dimension (w, h, l) 30∼90 cm level 1st

 30∼180 cm level 2nd

Number of box types 1∼5 types level 1st

 6∼20 types level 2nd

 21∼50 types level 3rd

 51∼100 types level 4th

Number of boxes 1∼100 boxes/type for number of box types (1st level)
 1∼25 boxes/type for number of box types (2nd level)
 1∼10 boxes/type for number of box types (3rd level)
 1∼5 boxes/type for number of box types (4th level)
Orientation 0, 1, 2
Stack index 1∼10
Box weight per volume 451∼500 kg/m3 for stack index #1 
 401∼450 kg/m3 for stack index #2 
 351∼400 kg/m3 for stack index #3 
 301∼350 kg/m3 for stack index #4 
 251∼300 kg/m3 for stack index #5 
 201∼250 kg/m3 for stack index #6 
 151∼200 kg/m3 for stack index #7 
 101∼150 kg/m3 for stack index #8 
 51∼100 kg/m3 for stack index #9 
 1∼50 kg/m3 for stack index #10 
Container Parameters 
Container width (W) 2000∼4000 mm
Container height (H) 2000∼4000 mm
Container length (L) 5000∼13000 mm
Container weight capacity per volume 300∼600 kg/m3  

 
Table 2.  The thirty randomly generated test problems 
Experimental 

problem 
Level of difference 
in box dimensions 

Level of number 
of box types 

Number of
box types

Experimental
problem 

Level of difference 
in box dimensions

Level of number 
of  box types 

Number of
box types

Exp_01 
Exp_02 
Exp_03 
Exp_04 
Exp_05 
Exp_06 
Exp_07 
Exp_08 
Exp_09 
Exp_10 
Exp_11 
Exp_12 
Exp_13 
Exp_14 
Exp_15 

2 
1 
2 
2 
1 
1 
1 
2 
1 
2 
1 
2 
2 
1 
1 

3 
3 
3 
2 
1 
2 
2 
1 
1 
4 
3 
1 
2 
4 
2 

22 
48 
27 
11 
3 
7 
7 
4 
4 
54 
36 
3 
10 
89 
17 

Exp_16 
Exp_17 
Exp_18 
Exp_19 
Exp_20 
Exp_21 
Exp_22 
Exp_23 
Exp_24 
Exp_25 
Exp_26 
Exp_27 
Exp_28 
Exp_29 
Exp_30 

2 
1 
1 
1 
1 
2 
1 
2 
1 
1 
2 
2 
2 
2 
1 

1 
2 
4 
1 
1 
4 
3 
1 
2 
1 
2 
4 
3 
1 
2 

3 
13 
68 
2 
4 
68 
33 
2 
10 
5 
18 
82 
23 
5 
8 

 
Table 3.  Recommended GA parameter settings 

Parameter Container Selection Container Loading 
Representation 0 to 10  (Integer) -1000 to 1000  (Real Number) 
Chromosome Length 1 to 10 18 
Population Size 50 60 
Genetic Operators Cloning, One-Point Crossover, Mutation Cloning, Random Crossover, Mutation 
Percent Cloning 0.10 0.10 
Crossover Rate 0.90 0.90 
Mutation Rate 0.10 0.10 
Maximum Generation 1000 10, 20, 30, 40, 50, 100, 200, 300, 500, 1000 
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4.4  Analysis of Computational Time of the 
Container Loading GA 

The computational time of the container loading GA 
can be effected by the efficiency of both the GA itself and 
the loading process. Using the thirty test problems, we 
conducted an experiment to test for the factors that affect 
the computation time of the loading process. Applying the 
previously recommended values of the GA parameters at 
the optimization level 10, Table 4 presents the computational 
time of each test run. 

We found that the computational times are quite 
reasonable and practically acceptable, and that they are 
significantly affected by the number of the different box 
types (shown in the second column) rather than by the 
number of loaded boxes as shown by the high runtime in 
“Exp_02”, “Exp_14”, “Exp_18”, and “Exp_27.” For the 
number of boxes, no significant effect can be found in the 
experiment.  

The existence of loading constraints, except the 
stack stability constraint, did reduce the runtime of the 
algorithm. An explanation of this result could be that 
the box orientation constraint reduces the possible 
orientations of boxes in consideration, while the stack 
priority constraint reduces the number of loading points in 

the point set and thus, in turn, the computational time. 

4.5  Comparative Evaluation 

To evaluate the performance of the proposed 
algorithm, we also conducted a comparison test using the 
test data available in the literature. For the container 
loading GA, we used one test problem found in Gehring 
et al. (1990), which proposed an effective algorithm based 
on the layer loading concept, and the same fifteen test 
problems found in Loh and Nee (1992) and Ngoi et al. 
(1994).  For the combined container selection and loading, 
we used the two test problems of Laotaweesub (1996).   

Gehring et al. (1990)’s problem consists of 21 boxes 
of 19 different box types required to be loaded in a 20-
foot standard container. Each box can have any 
orientation.  No loading constraints were considered, 
except that the stack stability for our algorithm was 
specified to 85% for both X and Z support parameters. 
Since the GA is stochastic by nature, and each run may 
not produce the same result, we ran the algorithm ten 
times and reported the best, the average, and the worst 
results, together with the average runtime. At the 
optimization level 5, i.e. population size of 60 and 
maximum number of generations of 50, the obtained 
results are shown in Table 5. It is interesting to note that, 
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 4.  Analysis of the computational time 

With no loading constraint With loading constraints rimental 
blems 

No. of 
box types 

Total No. 
of boxes Vol.Util.(%) Loaded boxes CPU time(sec) Vol.Util.(%) Loaded boxes CPU time(sec)

p_01 22 97 83.24 51 11.51 80.04 42 8.55 

p_02 
p_03 
p_04 
p_05 
p_06 
p_07 
p_08 
p_09 
p_10 
p_11 
p_12 
p_13 
p_14 
p_15 
p_16 
p_17 
p_18 
p_19 
p_20 
p_21 
p_22 
p_23 
p_24 
p_25 
p_26 
p_27 
p_28 
p_29 
p_30 

48 
27 
11 
3 
7 
7 
4 
4 
54 
36 
3 
10 
89 
17 
3 
13 
68 
2 
4 
68 
33 
2 
10 
5 
18 
82 
23 
5 
8 

280 
140 
89 
196 
97 
121 
174 
266 
162 
211 
170 
140 
252 
296 
175 
226 
197 
192 
291 
185 
205 
103 
162 
277 
193 
252 
116 
207 
140 

73.72 
85.57 
83.49 
82.04 
79.99 
80.46 
84.25 
86.58 
85.81 
75.91 
91.74 
85.00 
74.21 
79.67 
89.45 
83.32 
76.46 
83.75 
85.96 
84.99 
91.11 
79.87 
79.97 
86.07 
84.08 
83.57 
82.34 
86.11 
83.39 

208 
80 
53 
127 
78 
96 
120 
205 
86 
138 
89 
100 
190 
227 
101 
189 
134 
171 
242 
78 
21 
73 
100 
158 
74 
118 
50 
84 
81 

191.27 
24.84 
5.65 
11.19 
5.85 
10.50 
14.67 
29.35 
44.54 
93.61 
6.28 
15.57 
283.20 
68.40 
9.04 
50.08 
131.06 
14.75 
39.21 
82.38 
7.96 
5.85 
19.21 
28.30 
23.91 
147.29 
15.08 
13.17 
14.74 

72.28 
81.38 
77.90 
82.04 
80.81 
75.24 
79.10 
84.85 
82.14 
72.13 
90.14 
84.72 
71.31 
76.41 
88.97 
82.24 
73.18 
74.29 
85.82 
83.05 
87.92 
79.57 
78.05 
84.38 
82.92 
82.21 
77.83 
84.23 
79.06 

200 
88 
54 
127 
73 
104 
134 
222 
64 
138 
86 
98 
179 
226 
104 
173 
125 
134 
233 
77 
28 
96 
108 
186 
86 
92 
44 
78 
106 

111.74 
14.34 
3.88 
8.33 
4.32 
8.39 
9.10 
21.73 
32.45 
60.21 
5.69 
7.60 

158.20 
47.61 
7.63 
36.50 
80.73 
8.42 
26.21 
50.30 
5.52 
4.11 

15.20 
23.03 
14.06 
93.85 
9.23 
7.10 
9.55 
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when the stack stability was increased to 95%, all boxes 
could still be loaded. 

Each test problem of Loh and Nee (1992) or Ngoi et 
al. (1994) consists of 100-250 boxes with six-ten different 
box types. The box orientation constraint was considered. 
Our system was run with the orientation constraint and 
stack stability constraint with X and Z support parameters 
of 85% at the optimization level 5—the population size of 
60 with maximum number of generations of 50. Note that, 
in Table 6, we report the results and comparisons of the 
volume utilization of the container in both Ngoi et al. 
(1994) and our proposed system, but the packing density 
as published in Loh and Nee (1992). The packing density 
was defined as the total volume of loaded boxes 
expressed as the percentage of the volume of the 
“smallest rectangular envelope” enclosing those boxes. 

From the results shown in Table 6, our Container 
loading GA performs as well as or even better than the 
references. For those problems in which no boxes remain, 
the GA loading also achieves the same results. We paid 
special attention to the test data sets 2, 6, 7, and 13, in 
which there were some leftover boxes after loading.  It 
can be noted that our proposed algorithm provided better 
results both in terms of the volume utilization and the 
number of remaining boxes, except in test problem 6, in 
which we could achieve only better volume utilization. 
This situation is normal, due to the different box sizes. 
When we even further challenged our GA, by reducing 
the optimization level to 1—the population size of 60 
with maximum number of generations of 10, our system 
could still perform best among the three, as shown in 
Table 7. 

 
 
Table 5.  A Comparison with Gehring et al. (1990) 

Gehring et al. (1990) The proposed algorithm 

Vol. Util.(%) 
Comparison 

problems Vol. Util. 
(%) 

Leftover 
boxes Best Avergae Worst

Leftover 
boxes* CPU time** CPU time 

per generation

Gehring et al. (1990) 82.38 0 82.38 82.38 82.38 . 5.82 0.12 
Notes:   * Leftover boxes are of the best solution. 
              ** CPU time is the average of 10 runs.  (Unit: sec.) 

 
Table 6.  Comparisons with Ngoi et al. (1994) and Loh and Nee (1992) at the Optimization Level 5 

Ngoi et al. (1994) Loh and Nee (1992) The proposed algorithm 
Vol. Util. (%) Comparison 

problems Vol. Util. 
(%) 

Leftover 
boxes 

Packing 
Density(%) 

Leftover
boxes Best Avergae Worst

Leftover 
boxes* CPU time** CPU time 

per generation

Test data set # 1 

Test data set # 2 

Test data set # 3 

Test data set # 4 

Test data set # 5 

Test data set # 6 

Test data set # 7 

Test data set # 8 

Test data set # 9 

Test data set # 10 

Test data set # 11 

Test data set # 12 

Test data set # 13 

Test data set # 14 

Test data set # 15 

62.50 

80.73 

53.43 

54.96 

77.19 

88.72 

81.81 

59.42 

61.89 

67.29 

62.16 

78.52 

84.14 

62.81 

59.46 

0 

54 

0 

0 

0 

48 

10 

0 

0 

0 

0 

0 

2 

0 

0 

78.12 

76.77 

69.46 

77.57 

85.79 

88.55 

78.17 

67.58 

84.22 

70.10 

65.44 

79.33 

77.03 

69.09 

73.56 

0 

32 

0 

0 

1 

45 

21 

7 

0 

0 

0 

0 

15 

0 

0 

62.50

91.32

53.43

54.96

77.19

90.50

84.66

59.42

61.89

67.29

62.16

78.52

85.61

62.81

59.46

62.50

89.08

53.43

54.96

77.19

89.22

83.99

59.42

61.89

67.29

62.16

78.52

84.90

62.81

59.46

62.50

86.14

53.43

54.96

77.19

87.76

82.98

59.42

61.89

67.29

62.16

78.52

84.04

62.81

59.46

0 

31 

0 

0 

0 

52 

0 

0 

0 

0 

0 

0 

2 

0 

0 

28.49 

77.35 

103.90 

28.53 

36.93 

66.91 

102.52 

49.19 

116.08 

162.61 

27.94 

31.69 

38.39 

39.96 

169.79 

0.57 

1.55 

2.08 

0.57 

0.74 

1.34 

2.05 

0.98 

2.32 

3.25 

0.56 

0.63 

0.77 

0.80 

3.40 

Notes:   * Leftover boxes are of the best solution. 
              ** CPU time is an average of 10 runs. (Unit: sec.) 
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Table 7.  Comparisons with Ngoi et al. (1994) and Loh and Nee (1992) at the Optimization Level 1 

Ngoi et al. (1994) Loh and Nee (1992) The proposed algorithm 
Vol. Util.(%) Comparison 

problems Vol. Util. 
(%) 

Leftover 
boxes 

Packing 
Density(%) 

Leftover
boxes Best Avergae Worst

Leftover 
boxes* CPU time** CPU time 

per generation

Test data set # 1 
Test data set # 2 
Test data set # 3 
Test data set # 4 
Test data set # 5 
Test data set # 6 
Test data set # 7 
Test data set # 8 
Test data set # 9 
Test data set # 10 
Test data set # 11 
Test data set # 12 
Test data set # 13 
Test data set # 14 
Test data set # 15 

62.50 
80.73 
53.43 
54.96 
77.19 
88.72 
81.81 
59.42 
61.89 
67.29 
62.16 
78.52 
84.14 
62.81 
59.46 

0 
54 
0 
0 
0 
48 
10 
0 
0 
0 
0 
0 
2 
0 
0 

78.12 
76.77 
69.46 
77.57 
85.79 
88.55 
78.17 
67.58 
84.22 
70.10 
65.44 
79.33 
77.03 
69.09 
73.56 

0 
32 
0 
0 
1 
45 
21 
7 
0 
0 
0 
0 
15 
0 
0 

62.50
90.42
53.43
54.96
77.19
89.44
84.00
59.42
61.89
67.29
62.16
78.52
85.09
62.81
59.46

62.50
86.55
53.43
54.96
77.19
88.23
83.16
59.42
61.89
67.29
62.16
78.52
84.51
62.81
59.46

62.50
84.61
53.43
54.96
77.19
86.75
81.24
59.42
61.89
67.29
62.16
78.52
84.04
62.81
59.46

0 
34 
0 
0 
0 
46 
2 
0 
0 
0 
0 
0 
2 
0 
0 

6.07 
14.29 
20.86 
6.53 
7.09 
14.46 
19.10 
9.39 
24.02 
32.95 
5.75 
6.28 
7.80 
8.76 
37.59 

0.61 
1.43 
2.09 
0.65 
0.71 
1.45 
1.91 
0.94 
2.40 
3.30 
0.57 
0.63 
0.78 
0.88 
3.76 

Notes:   * Leftover boxes are of the best solution. 
              ** CPU time is an average of 10 runs. (Unit: sec.) 

 
Table 8.  Comparisons with Laotaweesub (1996) 

Laotaweesub (1996) "The Proposed System Comparison 
Problems Selected 

container 
Vol. Util. 

(%) 
Freight rate

(US$) 
Selected 
container 

Vol. Util. 
(%) 

Freight rate 
(US$) 

CPU time 
(sec.) 

Problem #1 40 FCL 
40 FCL 
20 FCL 

85.09 
72.46 
54.49 

650.00 
650.00 
450.00 

40 FCL 
40 FCL 
20 FCL 

86.20 
73.13 
50.92 

650.00 
650.00 
450.00 

 

Total   1750.00   1750.00 7.10 
 

Laotaweesub (1996) "The Proposed System Comparison 
Problems Selected 

container 
Vol. Util. 

(%) 
Freight rate 

(US$) 
Selected 
container 

Vol. Util. 
(%) 

Freight rate 
(US$) 

CPU time 
(xec.) 

Problem #2 40 FCL 
40 FCL 
40 FCL 
40 FCL 
20 FCL 
20 FCL 

80.60 
77.25 
66.36 
66.16 
48.12 
12.74 

3500.00 
3500.00 
3500.00 
3500.00 
3500.00 
3500.00 

40 FCL 
40 FCL 
40 FCL 
40 FCL 

86.19 
86.91 
84.68 
52.29 

3500.00 
3500.00 
3500.00 
3500.00 

 

Total   18000.00   14000.00 88.67 
 

 
The two real-world problems found in Laotaweesub 

(1996), on the other hand, are different from the container 
loading problems above, in that they also dealt with the 
container selection problem, minimizing the total 
transportation cost. The first problem has 95 boxes of 21 
different types, which need to be transported to a 
destination using two types of containers. The freight rate 

of each container type was given and considered in the 
container selection problem, while the container stability 
and one uppermost face for every box were considered in 
the container loading algorithm. The second problem has 
150 boxes of four types of materials that imply stack 
priority and two types of containers. Other problem 
characteristics are the same as those of the first problem. 
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The results of comparison as summarized in Table 8 
showed that our integrated system provided the solution 
at least as good as Laotaweesub (1996). In Problem 1, the 
same set of 3 containers summarized in the upper table (2 
of 40FCL type and 1 of 20FCL) was selected, quoting the 
same amount of transportation cost. However, our 
proposed algorithm prescribed higher volume utilizations 
in the first two containers (86.20% and 73.13%), leaving 
more space in the last container for the exporter to stow 
additional merchandise, if desired. In Problem 2, on the 
other hand, we could achieve a lower transportation cost 
summarized in the lower table ($14,000 compared with 
$18,000), using only 4 containers of 40FCL. The lower 
transportation cost was achieved mainly due to a higher 
volume utilization of each loaded container. 

5.  CONCLUSIONS AND FURTHER RESEARCH 

We propose an integrated heuristic approach based 
on genetic algorithms to solve the interrelated container 
selection and loading problems.  The overall procedure is 
iterative, first selecting a set of containers that minimizes 
the shipment cost in the GA container selection algorithm, 
and subsequently loading boxes into each container one at 
a time by the Container loading GA algorithm. If the 
volume (weight) of containers is found insufficient after 
loading, the minimum required volume (weight) is 
increased by that of the remaining boxes, and supplied 
into the container selection module to solve for another 
set of containers. Some containers may be unloaded, 
while reloading begins only for the newly selected 
containers. Practical aspects namely the box orientation, 
the stack priority, the stack stability and the container 
stability may be included in the loading process if the user 
so desires. 

When compared with other works, our container 
loading GA as well as the integrated system provides 
solutions that are at least as good, and better in several 
cases in terms of volume utilization and cost.  In general, 
the proposed integrated system was proved experimentally 
to be superior to other comparative approaches, and 
practical for real-world applications in dealing with other 
loading restrictions. 

Further research may attempt to improve this 
algorithm by a more appropriate container sequence and 
initial loading position. The effect of the container 
sequence to load on the number of containers used and, in 
turn, the total transportation cost may be studied, leading 
to an algorithm prescribing an optimal container sequence. 
A different initial loading position may be studied to 
improve the volume utilization. Further research may also 
include special restrictions that specifically exist in other 
container loading applications such as air cargo, in which, 
due to the non-rectangular shape of the container, boxes 
may be loaded without full-base support called wing 

packing. In addition, due to the inertia that exists during 
the take off or landing of a plane, the gap behind boxes is 
usually not allowed or may be allowed with some minor 
tolerances, since the boxes may be tilted and relocated, 
destroying goods inside. Other research may focus on the 
non-rectangular shapes of containers. 
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