
IEMS Vol. 3, No. 1, pp. 22-37, April 2004.

A GA-based Heuristic for the Interrelated Container
Selection Loading Problems

Anulark Techanitisawad†·Paisitt Tangwiwatwong
Industrial Engineering & Management School of Advanced Technologies

Asian Institute of Technology P.O.Box 4, Klong Luang Patumtani 12120, Thailand
Tel: +66-2-524-5689, E-mail: anulark@ait.ac.th (A. Techanitisawad)

Abstract. An integrated heuristic approach based on genetic algorithms (GAs) is proposed for solving the
container selection and loading problems. The GA for container selection solves a two-dimensional knapsack
problem, determining a set of containers to minimize the transportation or shipment cost. The GA for container
loading solves for the weighted coefficients in the evaluation functions that are applied in selecting loading
positions and boxes to be loaded, so that the volume utilization is maximized. Several loading constraints such as
box orientation, stack priority, stack stability, and container stability are also incorporated into the algorithm. In
general, our computational results based on randomly generated data and problems from the literature suggest
that the proposed heuristic provides a good solution in a reasonable amount of computational time.

Keywords: genetic algorithms, container loading, 3-dimensional packing, multi-container loading

1. INTRODUCTION

Logistics is usually regarded as a crucial function in
an organization, since for sales to be realized, firms must
deliver or distribute their goods to customers, warehouses,
or distribution centers. In the present distribution and
transportation systems, merchandise is normally loaded
into a container for economical movement and ease of
handling and transporting in a variety of modes. In
manual operations, the container type and the number of
each type to be used must be a priori determined to
minimize total transportation cost for a shipment.
However, due to space wastage that is unknown during
this preliminary stage, it is quite often difficult in practice
to determine a minimum-cost set of containers that can
stow all loads. When containers are not well packed,
additional containers may be required to transport all
boxes and those containers result in a higher shipping cost.
In addition, if there is any space remaining in a container
as a result of the maximum volume utilization of
containers, more merchandise can be added into the
container to increase sales volume and revenues to
exporters, as currently practiced in the import/export
business. The container selection and loading activities,
thus, deserve attention for improvement in their cost,
effectiveness, and efficiency.

Most papers in the literature only address the

container loading problem. Although there are many
approaches developed for the container loading problem,
according to Bischoff and Ratcliff (1995a), most existing
approaches are limited when dealing with practical
requirements, for example, the box orientation, load
bearing strength, load stability, and shipment priorities.
This paper, thus, addresses the interrelated container
selection and container loading problems with several
practical loading constraints, and also proposes a genetic-
algorithm-based heuristic to solve such problems
iteratively.

Given a number of rectangular boxes of products or
goods in different sizes and weights and different types of
rectangular containers, each of which has a specific size
with fixed dimensions and weight capacity, the
interrelated problems determine a combination of the
container types and the number of containers of each type
that minimize the total transportation or shipment cost,
and a loading pattern of boxes in each container that
maximizes the volume utilization of the container subject
to the following practical loading constraints:

1. The box orientation constraint specifies for a box any

orientation restriction in loading. Some box types may
have only one uppermost face but others may have
any uppermost face.

2. The stack priority constraint addresses the strength and

† : Corresponding Author

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 23

Figure 1. The stack stability constraint

density of the box or the unloading priority. A box
with higher strength has a higher priority being loaded
first. A box can only be stacked on top of boxes with
equal or higher priority.

3. The stack stability characterized in Figure 1 guarantees
that each box has enough support under its base and is
within the support parameters required by the user.
The X support parameter is specified by the
percentage of the width dimension and the Z support
parameter is specified by the percentage of the length
dimension of the box that must be supported by boxes
below, assuming that X-Z is the corresponding base
area of a box relative to its orientation.

4. The stability of the container is determined by the
center of gravity of a fully loaded container. It must be
sufficiently stable or balanced in both transverse and
longitudinal planes for ease of handling and safety
purposes, assuming that the weight of each box is
distributed uniformly over the box shape.

In terms of the solution algorithm, the genetic

algorithm (GA) concept was formally introduced in
1970s by John Holland at the University of Michigan. It
is a search procedure based on the mechanism of natural
selection and genetics (Goldberg, 1989), using a process
similar to biological evolution to improve a set of feasible
solutions called a population or generation through an
iterative process based on a fitness or evaluation function.
The genetic operators include reproduction, cloning,
crossover, and mutation. GAs have been extensively and
successfully applied to a variety of combinatorial
optimization problems. Motivated by success and
flexibility of the GAs, we devised an extended version of
Kawakami et al.(1991) and proposed an integrated
algorithm for iteratively solving the container selection
and loading problems.

The remainder of the paper is organized as follows:
Section 2 provides a brief literature review mostly on

container loading. Section 3 proposes the integrated
solution procedure, describing in details the selection and
loading modules, while Section 4 presents the
computational evaluation and analysis of the procedure
and the comparison of its performance with other existing
methods. Section 5 gives conclusions and suggestions for
future research.

2. LITERATURE REVIEW

The container-loading problem is normally classified
as the three-dimensional packing problem found in the
existing literature. Dyckhoff (1990) systematically compiled
and classified different types of cutting and packing
problems. Relative to the large volume of works
addressing one or two-dimensional cutting and packing
problems, only a limited number of researches have dealt
with three dimensions. Most works are concerned with
practical, heuristic solution procedures due to the
problem’s well-known complexity; however not many
practical loading constraints have been addressed.

A heuristic procedure for packing boxes into a
container using the layer concept was firstly developed by
George and Robinson (1980). This heuristic allows the
boxes to be stacked with any uppermost face and no
restriction on the number of boxes stacked on top, while
the boxes of the same type are restricted to be stacked in
proximity. The heuristic procedure is based on the
concept of filling the container layer by layer, a section of
the length over the complete height and width of the
container. The layer concept has become the basic idea of
some subsequent developments, such as Gehring et al.
(1990), Bischoff and Marriott (1990), Bischoff and
Ratchiff (1995b), Davies and Bischoff (1999), and Pisinger
(2002).

Metaheuristics, namely tabu search and genetic
algorithms, were also applied to the container loading
problem. Bortfeldt and Gehring (1998) applied a tabu

24 Anulark Techanitisawad·Paisitt Tangwiwatwong

search algorithm in a two-stage procedure, while
Bortfeldt and Gehring (2001) proposed a hybrid GA
based on the layer concept for solving the container
loading problem with several practical constraints. A
chromosome representing a stowage plan was
generated by a variant of the basic loading heuristic of
Gehring et al. (1990). The crossover and mutation
operators were done on layers, substructures of the
stowage plan. The computational results showed quite
an improvement in volume utilization, when compared
with other algorithms. The practical constraints
addressed in Bortfeldt and Gehring (2001) are similar
to ours, although differences do exist. Their so-called
stability and stacking constraints are quite restrictive,
while we allow flexibility for the user to specify the
minimum required base support of a box and stack
priority. In terms of the container balance, we also
check for the stability of an inclined container.

Kawakami et al. (1991) proposed a mechanism in
which the three-dimensional packing rule is automatically
adjusted by applying a genetic algorithm. The packing
strategies used to select the next loaded position and box
are controlled by two evaluation functions, consisting of
the weighted sum of the problem characteristics. Their
weighted coefficients are prescribed by the genetic
algorithm. However, limitations do exist in that all of the
boxes can have only one fixed orientation, and that no
practical aspects were considered in the packing
procedure. Motivated by the flexibility of Kawakami et al.
(1991), we further modified their GA approach to solve
our combined container selection and loading problem,
while simultaneously considering several practical
loading constraints.

In addition to the heuristics, a few papers proposed
the analytical approach, attempting to find exact solutions.
Tsai et al. (1993) formulated a mixed-integer programming
model for the three-dimensional pallet loading problem.
As expected, the significant computational time
requirement of the model does limit the practical use in
real-time palletizing applications, and the computation
time was found to increase exponentially as the number
of different box sizes increases. Ngoi et al. (1994) solved
the container-packing problem by applying a spatial
representation technique that represents the objects and
empty space as a combination of variable orthorhombic
cells by means of a simple matrix structure. Chen et al.
(1995) formulated the problem into a zero-one mixed
integer-programming model which incorporates many
practical restrictions, such as carton orientations, multiple
carton sizes, multiple container sizes, avoidance of carton
overlapping, and space utilization. Several aspects of the
container selection and loading problem, such as selecting
one container from several alternatives, weight distribution
of the cartons in the container, and variable container
length were also addressed. However, as in other analytical

approaches, this model suffered from long computational
times and, thus, is not practical for real applications.

For the combined container selection and loading
problem, Laotaweesub (1996) proposed an iterative
method to determine a set of containers that minimizes
the total transportation cost and a loading pattern for each
container that maximizes the volume utilization. The
container selection was solved by an integer-
programming model whose constraints include the
volume and payload capacity of the selected containers.
The container loading algorithm, on the other hand, was
based on the layer concept of Gehring et al. (1990), while
considering the stack restriction, box orientations, and
container stability. Although Laotaweesub (1996) dealt
with many practical constraints, weakness still exists in
the loading procedure, due to the high dependency of the
volume utilization on the choice of the reference box.
This paper addresses the combined container selection
and loading problem as in Laotaweesub (1996), however,
with the additional stack stability constraint, and further
improves the effectiveness and efficiency of the integrated
solution procedure.

3. THT INTEGRATED HEURISTIC SOLUTION
PROCEDURE

The integrated solution procedure summarized in
Figure 2 is an iterative procedure combining two main
heuristic algorithms, namely the container selection
algorithm (Section 3.1) and the container loading
algorithm (Section 3.2). The container selection algorithm
selects a combination of the available containers for
loading all boxes, minimizing the total transportation or
shipment cost. The container loading algorithm, on the
other hand, loads boxes into one container at a time,
resulting in a loading pattern of each selected container.
The practical loading constraints and limitations are
considered in the loading heuristic. Once all boxes are
loaded, the integrated procedure terminates. Otherwise,
the container selection algorithm is resolved, after
accordingly increasing the minimum required volume
(MRV) by the total volume of the remaining boxes and,
only if necessary, the minimum required weight (MRW)
by the total weight of the remaining boxes. However,
in almost all practical cases, MRW normally remains
unchanged in all iterations, unless the weight
constraint is significantly dominant. Given the updated
values of MRV, a new set of containers is determined
and the integrated procedure repeats as shown in
Figure 2. For the same containers suggested by both
old and new sets of containers, their loading solutions
are retained, whereas the rest must be unloaded, and
those boxes unloaded must be returned to the
remaining box list. Consequently, only new containers
will be loaded with the remaining boxes.

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 25

Figure 2. The integrated container selection and loading algorithms

Prepare information for container selection algorithm
(Ci , Vi, Wi , MRV, MRW)

Output: selected container set

Loading box set = Input box set

No

Yes

Begin loading boxes in loading box set with
the first container in the selected container set

Have all containers in
the selected container set

been loaded ?

Container Selection Algorithm

Container Loading Algorithm

Are there any leftover boxes ?
Yes

Prepare to load
the next container

Update the new values of
MRV and MRW

Start

 First time to select the
container set ?

No

• Retain loading patterns of the
containers previously loaded and
currently selected, and

• Unload boxes from the old
containers currently not selected,
return these boxes to the box set

• Update the box set and
container set.

Yes

No

Stop

26 Anulark Techanitisawad·Paisitt Tangwiwatwong

GEN = 0

Initialize genetic parameter

Randomize initial population

Evaluate fitness value of each
individual in population

GEN = GEN+1

GEN >= Max. GEN ?

Sort individuals in old population
by fitness value

Perform cloning operation

Perform crossover operation

Perform mutation operation

Select two individuals as parents
using roulette wheel method

Is the size of the new
population equal to the

pop. size parameter?

Yes

No

Yes

No

Add new offspring to new population

Evaluate fitness value of each
individual in population

Start

Stop

Figure 3. The genetic algorithm for the container selection problem

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 27

3.1 Container Selection Problem and Algorithm

Laotaweesub (1996) proposed a simple two-
dimensional knapsack model to find an optimal set of
containers that minimizes the total shipment cost, subject
to the volume capacity and the weight capacity
constraints. The model can be written as follows:

Minimize
1

n

i i
i

c x
=
∑

subject to
1

n

i i
i

v x MRV
=

≥∑

1

n

i i
i

w x MRW
=

≥∑

 xi ≥ 0, integer for all i,

whereas:

I = container type; i = 1, 2, 3, …, n (positive
integer)

xi = Number of containers of type I

ci = Freight rate or transportation cost of
container type i

vi = Volume capacity of container type i

wi = Weight capacity or maximum payload of
container type i

MRV = Minimum required volume for loading all
boxes

MRW = Minimum required weight for loading all
boxes

In this study, we propose a genetic algorithm to

solve the two-dimensional knapsack problem above for
four reasons. Firstly, the problem is of a small size and the
heuristic approach such as GA can often provide good
solutions. From our preliminary testing (not reported), the
GA can, in almost all cases, obtain optimal solutions
quickly. Secondly, due to the space wastage that incurs
inevitably after loading, we found that optimality of the
solution in this part may not be as critical as that of the
container loading. Thirdly, by using the GA, we can be
positive that for a larger problem with a higher number of
different container types, the runtime will normally be
fast. Lastly, in order to minimize the programming effort,
the same GA code can be used for both container
selection and loading algorithms.

A simple GA for the container selection problem was
proposed as follows. A solution is represented by a
chromosome which consists of the number of each
container type {x1, x2, x3,…, xn}. The initial population is
randomly generated. Each chromosome is evaluated
using the following evaluation function:

Evaluation function = Total transportation cost +
Volume penalty + Weight penalty, in which the penalty is
M (a big positive number) if the corresponding constraint
is violated.

In each generation, a new population is first created
by the cloning operator with a specific percentage of
cloning using the elitism concept. Two chromosomes or
“Parents” are selected from the previous generation using
the roulette wheel method. The one-point crossover is
then performed on the parents to obtain two new
chromosomes or “Offsprings”. The crossover is repeated
until the number of new chromosomes including cloned
ones is equal to the population size. In addition, the
mutation operation may be performed with the mutation
probability on the new offsprings generated from the
crossover operations, selecting a position in the
chromosome randomly, and then replacing the value at
that position with a new randomly generated value. The
solution of the container selection GA is obtained from
the best chromosome in the final generation. Its algorithm
is illustrated in Figure 3.

3.2 CONTAINER LOADING PROBLEM AND ALGORITHM

3.2.1 Loading Concept

Our container loading algorithm was modified from
Kawakami et al. (1991), in which boxes are loaded into a
container in the two following steps:

Step 1: Select a loading position in a container.
A best loading position is a point or coordinate (xk, yk,

zk) that minimizes, among all possible positions at which
a box could be located, the point evaluation function:

Pk = p1
.xk

2 + p2
.yk

2 + p3
.zk

2 + p4
.xk

.yk + p5
.xk

.zk +
p6

.yk
.zk + p7

.xk + p8
.yk + p9

.zk,

in which p1, p2, p3,…, p9 are the weighted coefficients.

Step 2: Select a box to be loaded at the selected loaded

position.
A best box to be loaded is one that maximizes,

among all remaining box i, the box evaluation function:

9

1
,i j

j
B b fact

=

= ∑ jor

in which bj is the jth weighted coefficient and factorj is
the jth evaluation factor which is defined to reflect the
individual characteristics of box i as follows:

factor1 = (wi

.hi
.li) Volume of box i

factor2 = (wi
.hi) / (W

.H) Ratio of the x-y area of box i
and the container

factor3 = (wi
.li) / (W

.L) Ratio of the x-z (base) area of

28 Anulark Techanitisawad·Paisitt Tangwiwatwong

box i and the container

factor4 = (hi
.li) / (H

.L) Ratio of the y-z area of box i
and the container

factor5 = (hi)2 / (wi
.li) Ratio of y (height) to the x-z

(base) area of box i
factor6 = orientation type of box i

0: A box has only one fixed position relative to the
container.

1: A box has the fixed height dimension or only one
uppermost face, while the width and length
dimensions (base dimensions) are interchangeable.

2: A box can be put in any orientation with any
uppermost face.

factor7 = stack index of box i
The stack index, a positive integer predetermined by
the user, indicates the stackability of a box. A box
with a low stack index is of a high density and high
strength, and thus, has a high priority to be loaded
first. Only a box with a higher stack index can be
stowed on top.

factor8 = (total number of boxes of box i type) . (weight
of box i type)
total weight of all boxes

factor9 = total number of boxes of box i type / total
number of all boxes

The point and box evaluation functions proposed

here are extensions of those presented by Kawakami et al.
(1991) that included only three factors. From our
preliminary computational experience, having more
factors that reflect different problem characteristics often
resulted in better solution quality. The weighted
coefficients of the evaluation functions, on the other hand,
are determined by a genetic algorithm to maximize the
volume utilization or, equivalently, to minimize the space
wastage of a container. The GA for container loading is
described in details in Section 3.2.3.

3.2.2 The Loading Process Algorithm

Given a container and boxes, the loading process
attempts to pack boxes, if not all, into the container, using
the point and box evaluation functions described above
and checking volume and weight feasibility and practical
limitations including stack priority and stability. The
loading algorithm is summarized in Figure 4.

Based on the box evaluation function, all boxes are
sorted in a nonincreasing order of Bi. The set of loading
points is initialized and (0,0,0) is set as the first and
currently chosen point or loading position. If there is
more than one possible loading position in the point set,
the best point k that minimizes Pk is selected as the current
point. For each current point, the first box in the box type
set or list is considered as the “current box” to be tried for
loading. Given all possible orientations of the current

box, the loading constraints are then checked. A box can
be loaded only if all of the following conditions are met:
(1) size: it fits into the remaining space based on the
current loading point; (2) overlap: it does not overlap
with any other loaded boxes; (3) stack priority: its stack
index is higher than that of the box below or that of the
current loading point; (4) stack stability: it has sufficient
base support as required by the user; (5) weight capacity:
the total weight of the loaded boxes must not exceed the
maximum payload of the container. If all checks are
passed, the current box is loaded at the current point;
both are then removed from their respective sets; the
three new points are added to the point set; and the
process repeats. Otherwise, the next box in the list is
considered. If no remaining box can be loaded at the
current point, this point is deleted from the list, and
another point is selected. The loading process continues
until no box remains or no points can be loaded by any
remaining boxes.

3.2.3 The Genetic Algorithm for the Container
Loading

To achieve a good loading pattern that maximizes
the volume utilization of a container, it is important to
prescribe the sets of weighted coefficients pj and bj
respectively for the point and box evaluation functions
that best suit the loading problem at hand. Proposed by
Kawakami et al. (1991), the GA is flexible and capable in
searching the set of weighted coefficients without specific
structures or prior information.

The general GA framework and components as
described in Section 3.1 are applicable to the container
loading as well, except where indicated otherwise. Here,
each chromosome is, instead represented by real values of
the weighted coefficients {p1, p2, p3,…, p9, b1, b2, b3,…,
b9}. Those in the initial population are randomly
generated. The random crossover was found in our
preliminary experiment to outperform the one- and two-
point crossovers, and, thus, implemented.

Since the overall objective is to maximize the
volume utilization of a container, each chromosome can
only be evaluated after the loading process has been
completed, as shown in Figure 5, using the following
fitness function:

Fitness function = Container volume utilization*
Penalty factor,
in which the penalty factor = 1 if the container stability

is satisfied, or
 = 1/M otherwise.

The container stability is checked after the container has
been completely loaded. Given that xi, yi, zi are positions
of the center of gravity of loaded box i in x-, y-, and z-
axes, respectively, the center of gravity of the loaded
container

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 29

Evaluate each box type in box set
(by box evaluation function)

Sort all box types by evaluation value
(max. to min.)

Select a box as 밹urrent box?from the first box type
that has any boxes remaining in the sorted box type set

Does this current box
at this current point pass

all constraints?

No

Yes

Initialize the point set as an empty set

Add point (0,0,0) to point set
(starting point)

No box remains in the box set
OR no point remains in the point set ?

Select point from the point set as 밹urrent pointٛ
(by point evaluation function)

Check size

Check overlap

Check stack priority

Check weight capacity

Does this current box have
other orientations?

Change 밹urrent box?to new or ient at ion

Are there any next box types
that have any boxes remaining

in the sorted box type set?

Select new box as 밹urrent box?from the next box type
that has any boxes remaining in the sorted box type set

Update solution set

Update box type

Add new point

Delete 밹urrent point?from poi nt set

Yes

Yes
Yes

No No

No

Start

Stop

Check stack stability

Figure 4. The loading process algorithm

30 Anulark Techanitisawad·Paisitt Tangwiwatwong

Ca lcu la te th e vo lum e u tiliza tio n
o f th e con ta in e r a s the fitn e ss va lu e

o f th is ind iv idu a l

Pa ss ch rom osom e va lu e o f in d iv idu a l
a s coe ffic ie n ts o f th e po in t and box

 e va lu a tio n fun c tio n

Load ing P ro ce ss

H ave a ll in d iv idu a l
been e va lu a ted ?

Check con ta in e r s tab ility

D oe s con ta in e r s ta b ility
ch eck in g pass ?

fitn e ss va lu e = vo lum e u til.* pena lty fa c to r

N o

Yes
N ex t in d iv idua l

N o

Yes

S ta rt

S top

Figure 5. The evaluation process of each chromosome in the container loading

(), , , ,
i i i i i i

i i i

i i
i i i

m x m y m z
X Y Z

m m m

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑ i

⎟
⎟ ,

where mi is the mass of the box i.
Figure 6a characterizes two different methods in

checking for the container stability. One is by the
horizontal range limit, within which the center of gravity
(X, Y, Z) of the container must fall in both transverse and
longitudinal planes, so that the container is considered
stable for handling. The other is by the maximum inclined
angle, with which (X, Y, Z) must falls within its base in
both transverse and longitudinal planes. In this case, the
following conditions are checked:

Arctan(X/Y) ≥ θT and Arctan((W-X)/Y) ≥ θT in the
transverse plane (see Figure 6b);

Arctan(Z/Y) ≥ θL and Arctan((L-Z)/Y) ≥ θL in the
longitudinal plane (see Figure 6c);

where:

θT is the maximum inclined angle in the transverse plane.
θL is the maximum inclined angle in the longitudinal

plane.
W is the width of the container.
L is the length of the container.

4. COMPUTATIONAL RESULTS AND ANALYSIS

The integrated container selection and loading
system was implemented in Microsoft Visual Basic 6.0,
providing a user interface for input data and results
including a graphical loading pattern. All experiments
were conducted on an IBM-PC compatible with the AMD
Athlon 700 MHz CPU and 64 MB RAM. From a
preliminary experiment (not reported), we found that the
optimality of the set of containers selected in the
container selection algorithm has very little effect on the
quality of the overall solution, which depends rather
heavily on the performance of the container loading
algorithm. All of our experiments, except indicated
otherwise, are, therefore, focused on the effectiveness and
efficiency of the container loading problem. Genetic
parameters were also tested and recommended. In
addition, computational times and comparisons with
results from the literature are reported.

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 31

Figure 6a. Conditions for the container stability

X

W-X
Y

θ T

W

W-X

X Y

θ T

W

Figure 6b. Container stability with maximum inclined angle in the transverse plane

L-Z

Z Y

θ L

L

L-Z

Z

Y

θ L

L

Figure 6c. Container stability with maximum inclined angle in the longitudinal plane

32 Anulark Techanitisawad·Paisitt Tangwiwatwong

4.1 Randomly Generated Container Loading Test
Problems

Thirty container loading test problems were
randomly generated using the uniform distribution.
Experimental factors include two levels of box
dimensions (30-90 cm and 30-180 cm.) and four levels of
the number of box types (1-5, 6-20, 21-50, and 51-100
types). The range of the number of boxes per type
consequently depends upon the level of number of box
types. The differences in box dimensions, on the other
hand, prescribe in each level the range of box dimensions.
Based on these factors and ranges specified in Table 1,
other box data such as dimensions of boxes and
restrictions on orientation, stack index, and weight were
randomly generated. Table 2 summarizes the levels of the
experimental factors for each test problem.

The random generation procedure for each test
problem is as follows:

Step 1 : Generate the level of differences in box dimensions,

the level of the number of box types, and
correspondingly the number of box types for
each box type.

Step 2 : For each box type, generate the parameters in this
particular order: (i) number of boxes, (ii) box
dimensions based on the range specified by the
level of differences in box dimensions, (iii) box
orientation, (iv) stack index, (v) weight per
volume

Step 3 : Generate the container dimensions and container
weight capacity per volume.

Step 4 : Accept the generated problem only if the volume
of the container is less than the total volume of
all boxes and the maximum payload of the
container is greater than the total weight of all
boxes. Otherwise, repeat all steps.

Generally, difficulty in the container loading

problem has been known to be associated with the
volume maximization, while the maximum payload of the
container is, normally, not the constraint in practice. To
obtain meaningful and practical results, we imposed the
above conditions on the generated problems.

4.2 Genetic Algorithm Performance and Control
Parameters

In a genetic algorithm, several control parameters
need to be set appropriately for each application to
optimize its performance. We conducted an extensive
preliminary experiment to determine suitable parameter
values, and noted that the GAs for both container
selection and loading problems performed well and
resulted in good solution quality, with a high crossover

rate of 0.85-0.95, the cloning rate of 0.05-0.15, and the
mutation rate of 0.05-0.15. The experiment also showed
that the GA normally found better solutions when the
population size and the number of populations are large.
Realizing the trade-off with the computational time, the
recommended values of the control parameters for both
GAs are summarized in Table 3. Note that specifically for
the container loading GA, the maximum number of
generations is set, based on the variable optimization
level indicated by the user. The optimization level trades
off between the computational time and solution quality.
In our implemented system, we allow the optimization
level to vary in ten levels each of which prescribes a
different number of generations as specified in Table 3.
The use may choose a low optimization level, resulting in
a short computational time, but may sacrifice the quality
of loading solutions obtained, and vice versa. The
recommended values were subsequently used in all
experiment that follows.

4.3 Effect of Loading Constraints

The stack stability of boxes is controlled by the
required base support parameters supplied by the user.
The effect of the stack stability was studied for its impact
on the quality of solutions. From the experimental results,
it is interesting to note that to relax or tighten this
constraint does not directly or consistently increase the
volume utilization, but the solution quality is rather
problem dependent. However, we strongly recommend
that this constraint be included in the loading process for
a more realistic result, and that high values of the
parameters be set to guarantee the stack stability.

We also conducted the experiment to study the
effect of other loading constraints. The population size
and the maximum number of generations were set to be
60 and 10, respectively, while other genetic algorithm
parameters were set as recommended. The box
orientation and the stack priority constraints follows the
descriptions of test problems, whereas the stack stability
was set at the support of 0.85 for both X and Z axes. The
container stability was considered with the maximum
angle of 7.29° for the transverse plane and of 45° for
the longitudinal plane, as suggested by Laotaweesub
(1996).

The results showed that, in general, the loading
solutions achieved lower volume utilization when the
loading constraints exist. The explanation for this is that
the loading constraints, except the stack stability
constraint, reduce the number of feasible solutions and
the solution space, resulting in less volume utilization of
the container. However, from our thirty experimental
problems, the existence of the loading constraints reduced,
on the average, by 3.13% of the volume utilization
without loading constraints.

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 33

Table 1. Parameters of the experimental problems
Parameter Range Unit Remarks
Box Parameters
Differences in Box dimension (w, h, l) 30∼90 cm level 1st

 30∼180 cm level 2nd

Number of box types 1∼5 types level 1st

 6∼20 types level 2nd

 21∼50 types level 3rd

 51∼100 types level 4th

Number of boxes 1∼100 boxes/type for number of box types (1st level)
 1∼25 boxes/type for number of box types (2nd level)
 1∼10 boxes/type for number of box types (3rd level)
 1∼5 boxes/type for number of box types (4th level)
Orientation 0, 1, 2
Stack index 1∼10
Box weight per volume 451∼500 kg/m3 for stack index #1
 401∼450 kg/m3 for stack index #2
 351∼400 kg/m3 for stack index #3
 301∼350 kg/m3 for stack index #4
 251∼300 kg/m3 for stack index #5
 201∼250 kg/m3 for stack index #6
 151∼200 kg/m3 for stack index #7
 101∼150 kg/m3 for stack index #8
 51∼100 kg/m3 for stack index #9
 1∼50 kg/m3 for stack index #10
Container Parameters
Container width (W) 2000∼4000 mm
Container height (H) 2000∼4000 mm
Container length (L) 5000∼13000 mm
Container weight capacity per volume 300∼600 kg/m3

Table 2. The thirty randomly generated test problems
Experimental

problem
Level of difference
in box dimensions

Level of number
of box types

Number of
box types

Experimental
problem

Level of difference
in box dimensions

Level of number
of box types

Number of
box types

Exp_01
Exp_02
Exp_03
Exp_04
Exp_05
Exp_06
Exp_07
Exp_08
Exp_09
Exp_10
Exp_11
Exp_12
Exp_13
Exp_14
Exp_15

2
1
2
2
1
1
1
2
1
2
1
2
2
1
1

3
3
3
2
1
2
2
1
1
4
3
1
2
4
2

22
48
27
11
3
7
7
4
4
54
36
3
10
89
17

Exp_16
Exp_17
Exp_18
Exp_19
Exp_20
Exp_21
Exp_22
Exp_23
Exp_24
Exp_25
Exp_26
Exp_27
Exp_28
Exp_29
Exp_30

2
1
1
1
1
2
1
2
1
1
2
2
2
2
1

1
2
4
1
1
4
3
1
2
1
2
4
3
1
2

3
13
68
2
4
68
33
2
10
5
18
82
23
5
8

Table 3. Recommended GA parameter settings

Parameter Container Selection Container Loading
Representation 0 to 10 (Integer) -1000 to 1000 (Real Number)
Chromosome Length 1 to 10 18
Population Size 50 60
Genetic Operators Cloning, One-Point Crossover, Mutation Cloning, Random Crossover, Mutation
Percent Cloning 0.10 0.10
Crossover Rate 0.90 0.90
Mutation Rate 0.10 0.10
Maximum Generation 1000 10, 20, 30, 40, 50, 100, 200, 300, 500, 1000

34 Anulark Techanitisawad·Paisitt Tangwiwatwong

4.4 Analysis of Computational Time of the
Container Loading GA

The computational time of the container loading GA
can be effected by the efficiency of both the GA itself and
the loading process. Using the thirty test problems, we
conducted an experiment to test for the factors that affect
the computation time of the loading process. Applying the
previously recommended values of the GA parameters at
the optimization level 10, Table 4 presents the computational
time of each test run.

We found that the computational times are quite
reasonable and practically acceptable, and that they are
significantly affected by the number of the different box
types (shown in the second column) rather than by the
number of loaded boxes as shown by the high runtime in
“Exp_02”, “Exp_14”, “Exp_18”, and “Exp_27.” For the
number of boxes, no significant effect can be found in the
experiment.

The existence of loading constraints, except the
stack stability constraint, did reduce the runtime of the
algorithm. An explanation of this result could be that
the box orientation constraint reduces the possible
orientations of boxes in consideration, while the stack
priority constraint reduces the number of loading points in

the point set and thus, in turn, the computational time.

4.5 Comparative Evaluation

To evaluate the performance of the proposed
algorithm, we also conducted a comparison test using the
test data available in the literature. For the container
loading GA, we used one test problem found in Gehring
et al. (1990), which proposed an effective algorithm based
on the layer loading concept, and the same fifteen test
problems found in Loh and Nee (1992) and Ngoi et al.
(1994). For the combined container selection and loading,
we used the two test problems of Laotaweesub (1996).

Gehring et al. (1990)’s problem consists of 21 boxes
of 19 different box types required to be loaded in a 20-
foot standard container. Each box can have any
orientation. No loading constraints were considered,
except that the stack stability for our algorithm was
specified to 85% for both X and Z support parameters.
Since the GA is stochastic by nature, and each run may
not produce the same result, we ran the algorithm ten
times and reported the best, the average, and the worst
results, together with the average runtime. At the
optimization level 5, i.e. population size of 60 and
maximum number of generations of 50, the obtained
results are shown in Table 5. It is interesting to note that,

Table

Expe
pro

Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex
Ex

 4. Analysis of the computational time

With no loading constraint With loading constraints rimental
blems

No. of
box types

Total No.
of boxes Vol.Util.(%) Loaded boxes CPU time(sec) Vol.Util.(%) Loaded boxes CPU time(sec)

p_01 22 97 83.24 51 11.51 80.04 42 8.55

p_02
p_03
p_04
p_05
p_06
p_07
p_08
p_09
p_10
p_11
p_12
p_13
p_14
p_15
p_16
p_17
p_18
p_19
p_20
p_21
p_22
p_23
p_24
p_25
p_26
p_27
p_28
p_29
p_30

48
27
11
3
7
7
4
4
54
36
3
10
89
17
3
13
68
2
4
68
33
2
10
5
18
82
23
5
8

280
140
89
196
97
121
174
266
162
211
170
140
252
296
175
226
197
192
291
185
205
103
162
277
193
252
116
207
140

73.72
85.57
83.49
82.04
79.99
80.46
84.25
86.58
85.81
75.91
91.74
85.00
74.21
79.67
89.45
83.32
76.46
83.75
85.96
84.99
91.11
79.87
79.97
86.07
84.08
83.57
82.34
86.11
83.39

208
80
53
127
78
96
120
205
86
138
89
100
190
227
101
189
134
171
242
78
21
73
100
158
74
118
50
84
81

191.27
24.84
5.65
11.19
5.85
10.50
14.67
29.35
44.54
93.61
6.28
15.57
283.20
68.40
9.04
50.08
131.06
14.75
39.21
82.38
7.96
5.85
19.21
28.30
23.91
147.29
15.08
13.17
14.74

72.28
81.38
77.90
82.04
80.81
75.24
79.10
84.85
82.14
72.13
90.14
84.72
71.31
76.41
88.97
82.24
73.18
74.29
85.82
83.05
87.92
79.57
78.05
84.38
82.92
82.21
77.83
84.23
79.06

200
88
54
127
73
104
134
222
64
138
86
98
179
226
104
173
125
134
233
77
28
96
108
186
86
92
44
78
106

111.74
14.34
3.88
8.33
4.32
8.39
9.10
21.73
32.45
60.21
5.69
7.60

158.20
47.61
7.63
36.50
80.73
8.42
26.21
50.30
5.52
4.11

15.20
23.03
14.06
93.85
9.23
7.10
9.55

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 35

when the stack stability was increased to 95%, all boxes
could still be loaded.

Each test problem of Loh and Nee (1992) or Ngoi et
al. (1994) consists of 100-250 boxes with six-ten different
box types. The box orientation constraint was considered.
Our system was run with the orientation constraint and
stack stability constraint with X and Z support parameters
of 85% at the optimization level 5—the population size of
60 with maximum number of generations of 50. Note that,
in Table 6, we report the results and comparisons of the
volume utilization of the container in both Ngoi et al.
(1994) and our proposed system, but the packing density
as published in Loh and Nee (1992). The packing density
was defined as the total volume of loaded boxes
expressed as the percentage of the volume of the
“smallest rectangular envelope” enclosing those boxes.

From the results shown in Table 6, our Container
loading GA performs as well as or even better than the
references. For those problems in which no boxes remain,
the GA loading also achieves the same results. We paid
special attention to the test data sets 2, 6, 7, and 13, in
which there were some leftover boxes after loading. It
can be noted that our proposed algorithm provided better
results both in terms of the volume utilization and the
number of remaining boxes, except in test problem 6, in
which we could achieve only better volume utilization.
This situation is normal, due to the different box sizes.
When we even further challenged our GA, by reducing
the optimization level to 1—the population size of 60
with maximum number of generations of 10, our system
could still perform best among the three, as shown in
Table 7.

Table 5. A Comparison with Gehring et al. (1990)

Gehring et al. (1990) The proposed algorithm

Vol. Util.(%)
Comparison

problems Vol. Util.
(%)

Leftover
boxes Best Avergae Worst

Leftover
boxes* CPU time** CPU time

per generation

Gehring et al. (1990) 82.38 0 82.38 82.38 82.38 . 5.82 0.12
Notes: * Leftover boxes are of the best solution.
 ** CPU time is the average of 10 runs. (Unit: sec.)

Table 6. Comparisons with Ngoi et al. (1994) and Loh and Nee (1992) at the Optimization Level 5

Ngoi et al. (1994) Loh and Nee (1992) The proposed algorithm
Vol. Util. (%) Comparison

problems Vol. Util.
(%)

Leftover
boxes

Packing
Density(%)

Leftover
boxes Best Avergae Worst

Leftover
boxes* CPU time** CPU time

per generation

Test data set # 1

Test data set # 2

Test data set # 3

Test data set # 4

Test data set # 5

Test data set # 6

Test data set # 7

Test data set # 8

Test data set # 9

Test data set # 10

Test data set # 11

Test data set # 12

Test data set # 13

Test data set # 14

Test data set # 15

62.50

80.73

53.43

54.96

77.19

88.72

81.81

59.42

61.89

67.29

62.16

78.52

84.14

62.81

59.46

0

54

0

0

0

48

10

0

0

0

0

0

2

0

0

78.12

76.77

69.46

77.57

85.79

88.55

78.17

67.58

84.22

70.10

65.44

79.33

77.03

69.09

73.56

0

32

0

0

1

45

21

7

0

0

0

0

15

0

0

62.50

91.32

53.43

54.96

77.19

90.50

84.66

59.42

61.89

67.29

62.16

78.52

85.61

62.81

59.46

62.50

89.08

53.43

54.96

77.19

89.22

83.99

59.42

61.89

67.29

62.16

78.52

84.90

62.81

59.46

62.50

86.14

53.43

54.96

77.19

87.76

82.98

59.42

61.89

67.29

62.16

78.52

84.04

62.81

59.46

0

31

0

0

0

52

0

0

0

0

0

0

2

0

0

28.49

77.35

103.90

28.53

36.93

66.91

102.52

49.19

116.08

162.61

27.94

31.69

38.39

39.96

169.79

0.57

1.55

2.08

0.57

0.74

1.34

2.05

0.98

2.32

3.25

0.56

0.63

0.77

0.80

3.40

Notes: * Leftover boxes are of the best solution.
 ** CPU time is an average of 10 runs. (Unit: sec.)

36 Anulark Techanitisawad·Paisitt Tangwiwatwong

Table 7. Comparisons with Ngoi et al. (1994) and Loh and Nee (1992) at the Optimization Level 1

Ngoi et al. (1994) Loh and Nee (1992) The proposed algorithm
Vol. Util.(%) Comparison

problems Vol. Util.
(%)

Leftover
boxes

Packing
Density(%)

Leftover
boxes Best Avergae Worst

Leftover
boxes* CPU time** CPU time

per generation

Test data set # 1
Test data set # 2
Test data set # 3
Test data set # 4
Test data set # 5
Test data set # 6
Test data set # 7
Test data set # 8
Test data set # 9
Test data set # 10
Test data set # 11
Test data set # 12
Test data set # 13
Test data set # 14
Test data set # 15

62.50
80.73
53.43
54.96
77.19
88.72
81.81
59.42
61.89
67.29
62.16
78.52
84.14
62.81
59.46

0
54
0
0
0
48
10
0
0
0
0
0
2
0
0

78.12
76.77
69.46
77.57
85.79
88.55
78.17
67.58
84.22
70.10
65.44
79.33
77.03
69.09
73.56

0
32
0
0
1
45
21
7
0
0
0
0
15
0
0

62.50
90.42
53.43
54.96
77.19
89.44
84.00
59.42
61.89
67.29
62.16
78.52
85.09
62.81
59.46

62.50
86.55
53.43
54.96
77.19
88.23
83.16
59.42
61.89
67.29
62.16
78.52
84.51
62.81
59.46

62.50
84.61
53.43
54.96
77.19
86.75
81.24
59.42
61.89
67.29
62.16
78.52
84.04
62.81
59.46

0
34
0
0
0
46
2
0
0
0
0
0
2
0
0

6.07
14.29
20.86
6.53
7.09
14.46
19.10
9.39
24.02
32.95
5.75
6.28
7.80
8.76
37.59

0.61
1.43
2.09
0.65
0.71
1.45
1.91
0.94
2.40
3.30
0.57
0.63
0.78
0.88
3.76

Notes: * Leftover boxes are of the best solution.
 ** CPU time is an average of 10 runs. (Unit: sec.)

Table 8. Comparisons with Laotaweesub (1996)

Laotaweesub (1996) "The Proposed System Comparison
Problems Selected

container
Vol. Util.

(%)
Freight rate

(US$)
Selected
container

Vol. Util.
(%)

Freight rate
(US$)

CPU time
(sec.)

Problem #1 40 FCL
40 FCL
20 FCL

85.09
72.46
54.49

650.00
650.00
450.00

40 FCL
40 FCL
20 FCL

86.20
73.13
50.92

650.00
650.00
450.00

Total 1750.00 1750.00 7.10

Laotaweesub (1996) "The Proposed System Comparison
Problems Selected

container
Vol. Util.

(%)
Freight rate

(US$)
Selected
container

Vol. Util.
(%)

Freight rate
(US$)

CPU time
(xec.)

Problem #2 40 FCL
40 FCL
40 FCL
40 FCL
20 FCL
20 FCL

80.60
77.25
66.36
66.16
48.12
12.74

3500.00
3500.00
3500.00
3500.00
3500.00
3500.00

40 FCL
40 FCL
40 FCL
40 FCL

86.19
86.91
84.68
52.29

3500.00
3500.00
3500.00
3500.00

Total 18000.00 14000.00 88.67

The two real-world problems found in Laotaweesub

(1996), on the other hand, are different from the container
loading problems above, in that they also dealt with the
container selection problem, minimizing the total
transportation cost. The first problem has 95 boxes of 21
different types, which need to be transported to a
destination using two types of containers. The freight rate

of each container type was given and considered in the
container selection problem, while the container stability
and one uppermost face for every box were considered in
the container loading algorithm. The second problem has
150 boxes of four types of materials that imply stack
priority and two types of containers. Other problem
characteristics are the same as those of the first problem.

 A GA-based Heuristic for the Interrelated Container Selection Loading Problems 37

The results of comparison as summarized in Table 8
showed that our integrated system provided the solution
at least as good as Laotaweesub (1996). In Problem 1, the
same set of 3 containers summarized in the upper table (2
of 40FCL type and 1 of 20FCL) was selected, quoting the
same amount of transportation cost. However, our
proposed algorithm prescribed higher volume utilizations
in the first two containers (86.20% and 73.13%), leaving
more space in the last container for the exporter to stow
additional merchandise, if desired. In Problem 2, on the
other hand, we could achieve a lower transportation cost
summarized in the lower table ($14,000 compared with
$18,000), using only 4 containers of 40FCL. The lower
transportation cost was achieved mainly due to a higher
volume utilization of each loaded container.

5. CONCLUSIONS AND FURTHER RESEARCH

We propose an integrated heuristic approach based
on genetic algorithms to solve the interrelated container
selection and loading problems. The overall procedure is
iterative, first selecting a set of containers that minimizes
the shipment cost in the GA container selection algorithm,
and subsequently loading boxes into each container one at
a time by the Container loading GA algorithm. If the
volume (weight) of containers is found insufficient after
loading, the minimum required volume (weight) is
increased by that of the remaining boxes, and supplied
into the container selection module to solve for another
set of containers. Some containers may be unloaded,
while reloading begins only for the newly selected
containers. Practical aspects namely the box orientation,
the stack priority, the stack stability and the container
stability may be included in the loading process if the user
so desires.

When compared with other works, our container
loading GA as well as the integrated system provides
solutions that are at least as good, and better in several
cases in terms of volume utilization and cost. In general,
the proposed integrated system was proved experimentally
to be superior to other comparative approaches, and
practical for real-world applications in dealing with other
loading restrictions.

Further research may attempt to improve this
algorithm by a more appropriate container sequence and
initial loading position. The effect of the container
sequence to load on the number of containers used and, in
turn, the total transportation cost may be studied, leading
to an algorithm prescribing an optimal container sequence.
A different initial loading position may be studied to
improve the volume utilization. Further research may also
include special restrictions that specifically exist in other
container loading applications such as air cargo, in which,
due to the non-rectangular shape of the container, boxes
may be loaded without full-base support called wing

packing. In addition, due to the inertia that exists during
the take off or landing of a plane, the gap behind boxes is
usually not allowed or may be allowed with some minor
tolerances, since the boxes may be tilted and relocated,
destroying goods inside. Other research may focus on the
non-rectangular shapes of containers.

REFERENCES

Bischoff, E.E., Marriott, M.D. (1990) A comparative
evaluation of heuristics for container loading, European
Journal of Operational Research 44, 267-276.

Bischoff, E.E., Ratcliff, M.S.W. (1995a) Issues in the
development of approaches to container loading. Omega
23, 377¯390.

Bischoff, E.E., Ratcliff, M.S.W. (1995b) Loading multiple
pallets. Journal of the Operational Research Society 46,
1322¯1336.

Bortfeldt, A., Gehring H. (1998) Applying tabu search to
container loading problems. In: Operations Research
Proceedings 1997, Springer, Berlin, 533¯538.

Bortfeldt, A., Gehring H. (2001) A hybrid genetic algorithm
for the container loading problem. European Journal of
Operational Research 131, 141-161.

Chen, C.S., Lee, S.M., Shen, Q.S. (1995) An analytical model
for the container loading problem, European Journal of
Operational Research 80, 68-76.

Davies, A.P., Bischoff, E.E. (1999) Weight distribution
considerations in container loading, European Journal of
Operational Research 114, 509-527.

Dyckhoff H. (1990). A typology of cutting and packing
problems. European Journal of Operational Research 44,
145¯159.

Gehring, H., Menschner, K., Meyer, M. (1990) A computer-
based heuristic for packing pooled shipment containers,
European Journal of Operational Research 44, 277-289.

George, J.A., Robinson, D.F. (1980). A heuristic for packing
boxes into a container, Computers and Operational
Research 7, 147-156.

Goldberg, D. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning, Addison Wesley,
Reading, MA.

Kawakami, T., Minagawa, M., Kakazu, Y. (1991) Auto tuning
of 3D packing rules using genetic algorithms, IEEE/RSJ
International Workshop on Intelligent Robots and
Systems IROS'91, Nov. 3-5, 1319-1324.

Laotaweesub, S. (1996) The development of a container
selection and loading system, Thesis: No. ISE-96-18,
Asian Institute of Technology, Thailand.

Ngoi, B.K.A., Tay, M.L., Chua, E.S. (1994) Applying spatial
representation techniques to the container packing
problem, International Journal of Production Research
32, 111-123.

Pisinger, D. (2002) Heuristics for the container loading
problem, European Journal of Operational Research 141,
382-392.

Tsai, R.D., Malstrom, E.M., Kuo, W. (1993) Three dimensional
palletization of mixed box sizes, IIE Transactions 25, 64-
75

